-
Notifications
You must be signed in to change notification settings - Fork 46
/
RFC821
3755 lines (1899 loc) · 111 KB
/
RFC821
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
RFC 821
SIMPLE MAIL TRANSFER PROTOCOL
Jonathan B. Postel
August 1982
Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, California 90291
(213) 822-1511
RFC 821 August 1982
Simple Mail Transfer Protocol
TABLE OF CONTENTS
1. INTRODUCTION .................................................. 1
2. THE SMTP MODEL ................................................ 2
3. THE SMTP PROCEDURE ............................................ 4
3.1. Mail ..................................................... 4
3.2. Forwarding ............................................... 7
3.3. Verifying and Expanding .................................. 8
3.4. Sending and Mailing ..................................... 11
3.5. Opening and Closing ..................................... 13
3.6. Relaying ................................................ 14
3.7. Domains ................................................. 17
3.8. Changing Roles .......................................... 18
4. THE SMTP SPECIFICATIONS ...................................... 19
4.1. SMTP Commands ........................................... 19
4.1.1. Command Semantics ..................................... 19
4.1.2. Command Syntax ........................................ 27
4.2. SMTP Replies ............................................ 34
4.2.1. Reply Codes by Function Group ......................... 35
4.2.2. Reply Codes in Numeric Order .......................... 36
4.3. Sequencing of Commands and Replies ...................... 37
4.4. State Diagrams .......................................... 39
4.5. Details ................................................. 41
4.5.1. Minimum Implementation ................................ 41
4.5.2. Transparency .......................................... 41
4.5.3. Sizes ................................................. 42
APPENDIX A: TCP ................................................. 44
APPENDIX B: NCP ................................................. 45
APPENDIX C: NITS ................................................ 46
APPENDIX D: X.25 ................................................ 47
APPENDIX E: Theory of Reply Codes ............................... 48
APPENDIX F: Scenarios ........................................... 51
GLOSSARY ......................................................... 64
REFERENCES ....................................................... 67
Network Working Group J. Postel
Request for Comments: DRAFT ISI
Replaces: RFC 788, 780, 772 August 1982
SIMPLE MAIL TRANSFER PROTOCOL
1. INTRODUCTION
The objective of Simple Mail Transfer Protocol (SMTP) is to transfer
mail reliably and efficiently.
SMTP is independent of the particular transmission subsystem and
requires only a reliable ordered data stream channel. Appendices A,
B, C, and D describe the use of SMTP with various transport services.
A Glossary provides the definitions of terms as used in this
document.
An important feature of SMTP is its capability to relay mail across
transport service environments. A transport service provides an
interprocess communication environment (IPCE). An IPCE may cover one
network, several networks, or a subset of a network. It is important
to realize that transport systems (or IPCEs) are not one-to-one with
networks. A process can communicate directly with another process
through any mutually known IPCE. Mail is an application or use of
interprocess communication. Mail can be communicated between
processes in different IPCEs by relaying through a process connected
to two (or more) IPCEs. More specifically, mail can be relayed
between hosts on different transport systems by a host on both
transport systems.
Postel [Page 1]
August 1982 RFC 821
Simple Mail Transfer Protocol
2. THE SMTP MODEL
The SMTP design is based on the following model of communication: as
the result of a user mail request, the sender-SMTP establishes a
two-way transmission channel to a receiver-SMTP. The receiver-SMTP
may be either the ultimate destination or an intermediate. SMTP
commands are generated by the sender-SMTP and sent to the
receiver-SMTP. SMTP replies are sent from the receiver-SMTP to the
sender-SMTP in response to the commands.
Once the transmission channel is established, the SMTP-sender sends a
MAIL command indicating the sender of the mail. If the SMTP-receiver
can accept mail it responds with an OK reply. The SMTP-sender then
sends a RCPT command identifying a recipient of the mail. If the
SMTP-receiver can accept mail for that recipient it responds with an
OK reply; if not, it responds with a reply rejecting that recipient
(but not the whole mail transaction). The SMTP-sender and
SMTP-receiver may negotiate several recipients. When the recipients
have been negotiated the SMTP-sender sends the mail data, terminating
with a special sequence. If the SMTP-receiver successfully processes
the mail data it responds with an OK reply. The dialog is purposely
lock-step, one-at-a-time.
-------------------------------------------------------------
+----------+ +----------+
+------+ | | | |
| User |<-->| | SMTP | |
+------+ | Sender- |Commands/Replies| Receiver-|
+------+ | SMTP |<-------------->| SMTP | +------+
| File |<-->| | and Mail | |<-->| File |
|System| | | | | |System|
+------+ +----------+ +----------+ +------+
Sender-SMTP Receiver-SMTP
Model for SMTP Use
Figure 1
-------------------------------------------------------------
The SMTP provides mechanisms for the transmission of mail; directly
from the sending user's host to the receiving user's host when the
[Page 2] Postel
RFC 821 August 1982
Simple Mail Transfer Protocol
two host are connected to the same transport service, or via one or
more relay SMTP-servers when the source and destination hosts are not
connected to the same transport service.
To be able to provide the relay capability the SMTP-server must be
supplied with the name of the ultimate destination host as well as
the destination mailbox name.
The argument to the MAIL command is a reverse-path, which specifies
who the mail is from. The argument to the RCPT command is a
forward-path, which specifies who the mail is to. The forward-path
is a source route, while the reverse-path is a return route (which
may be used to return a message to the sender when an error occurs
with a relayed message).
When the same message is sent to multiple recipients the SMTP
encourages the transmission of only one copy of the data for all the
recipients at the same destination host.
The mail commands and replies have a rigid syntax. Replies also have
a numeric code. In the following, examples appear which use actual
commands and replies. The complete lists of commands and replies
appears in Section 4 on specifications.
Commands and replies are not case sensitive. That is, a command or
reply word may be upper case, lower case, or any mixture of upper and
lower case. Note that this is not true of mailbox user names. For
some hosts the user name is case sensitive, and SMTP implementations
must take case to preserve the case of user names as they appear in
mailbox arguments. Host names are not case sensitive.
Commands and replies are composed of characters from the ASCII
character set [1]. When the transport service provides an 8-bit byte
(octet) transmission channel, each 7-bit character is transmitted
right justified in an octet with the high order bit cleared to zero.
When specifying the general form of a command or reply, an argument
(or special symbol) will be denoted by a meta-linguistic variable (or
constant), for example, "<string>" or "<reverse-path>". Here the
angle brackets indicate these are meta-linguistic variables.
However, some arguments use the angle brackets literally. For
example, an actual reverse-path is enclosed in angle brackets, i.e.,
"<[email protected]>" is an instance of <reverse-path> (the
angle brackets are actually transmitted in the command or reply).
Postel [Page 3]
August 1982 RFC 821
Simple Mail Transfer Protocol
3. THE SMTP PROCEDURES
This section presents the procedures used in SMTP in several parts.
First comes the basic mail procedure defined as a mail transaction.
Following this are descriptions of forwarding mail, verifying mailbox
names and expanding mailing lists, sending to terminals instead of or
in combination with mailboxes, and the opening and closing exchanges.
At the end of this section are comments on relaying, a note on mail
domains, and a discussion of changing roles. Throughout this section
are examples of partial command and reply sequences, several complete
scenarios are presented in Appendix F.
3.1. MAIL
There are three steps to SMTP mail transactions. The transaction
is started with a MAIL command which gives the sender
identification. A series of one or more RCPT commands follows
giving the receiver information. Then a DATA command gives the
mail data. And finally, the end of mail data indicator confirms
the transaction.
The first step in the procedure is the MAIL command. The
<reverse-path> contains the source mailbox.
MAIL <SP> FROM:<reverse-path> <CRLF>
This command tells the SMTP-receiver that a new mail
transaction is starting and to reset all its state tables and
buffers, including any recipients or mail data. It gives the
reverse-path which can be used to report errors. If accepted,
the receiver-SMTP returns a 250 OK reply.
The <reverse-path> can contain more than just a mailbox. The
<reverse-path> is a reverse source routing list of hosts and
source mailbox. The first host in the <reverse-path> should be
the host sending this command.
The second step in the procedure is the RCPT command.
RCPT <SP> TO:<forward-path> <CRLF>
This command gives a forward-path identifying one recipient.
If accepted, the receiver-SMTP returns a 250 OK reply, and
stores the forward-path. If the recipient is unknown the
receiver-SMTP returns a 550 Failure reply. This second step of
the procedure can be repeated any number of times.
[Page 4] Postel
RFC 821 August 1982
Simple Mail Transfer Protocol
The <forward-path> can contain more than just a mailbox. The
<forward-path> is a source routing list of hosts and the
destination mailbox. The first host in the <forward-path>
should be the host receiving this command.
The third step in the procedure is the DATA command.
DATA <CRLF>
If accepted, the receiver-SMTP returns a 354 Intermediate reply
and considers all succeeding lines to be the message text.
When the end of text is received and stored the SMTP-receiver
sends a 250 OK reply.
Since the mail data is sent on the transmission channel the end
of the mail data must be indicated so that the command and
reply dialog can be resumed. SMTP indicates the end of the
mail data by sending a line containing only a period. A
transparency procedure is used to prevent this from interfering
with the user's text (see Section 4.5.2).
Please note that the mail data includes the memo header
items such as Date, Subject, To, Cc, From [2].
The end of mail data indicator also confirms the mail
transaction and tells the receiver-SMTP to now process the
stored recipients and mail data. If accepted, the
receiver-SMTP returns a 250 OK reply. The DATA command should
fail only if the mail transaction was incomplete (for example,
no recipients), or if resources are not available.
The above procedure is an example of a mail transaction. These
commands must be used only in the order discussed above.
Example 1 (below) illustrates the use of these commands in a mail
transaction.
Postel [Page 5]
August 1982 RFC 821
Simple Mail Transfer Protocol
-------------------------------------------------------------
Example of the SMTP Procedure
This SMTP example shows mail sent by Smith at host Alpha.ARPA,
to Jones, Green, and Brown at host Beta.ARPA. Here we assume
that host Alpha contacts host Beta directly.
S: MAIL FROM:<[email protected]>
R: 250 OK
S: RCPT TO:<[email protected]>
R: 250 OK
S: RCPT TO:<[email protected]>
R: 550 No such user here
S: RCPT TO:<[email protected]>
R: 250 OK
S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: <CRLF>.<CRLF>
R: 250 OK
The mail has now been accepted for Jones and Brown. Green did
not have a mailbox at host Beta.
Example 1
-------------------------------------------------------------
[Page 6] Postel
RFC 821 August 1982
Simple Mail Transfer Protocol
3.2. FORWARDING
There are some cases where the destination information in the
<forward-path> is incorrect, but the receiver-SMTP knows the
correct destination. In such cases, one of the following replies
should be used to allow the sender to contact the correct
destination.
251 User not local; will forward to <forward-path>
This reply indicates that the receiver-SMTP knows the user's
mailbox is on another host and indicates the correct
forward-path to use in the future. Note that either the
host or user or both may be different. The receiver takes
responsibility for delivering the message.
551 User not local; please try <forward-path>
This reply indicates that the receiver-SMTP knows the user's
mailbox is on another host and indicates the correct
forward-path to use. Note that either the host or user or
both may be different. The receiver refuses to accept mail
for this user, and the sender must either redirect the mail
according to the information provided or return an error
response to the originating user.
Example 2 illustrates the use of these responses.
-------------------------------------------------------------
Example of Forwarding
Either
S: RCPT TO:<[email protected]>
R: 251 User not local; will forward to <[email protected]>
Or
S: RCPT TO:<[email protected]>
R: 551 User not local; please try <[email protected]>
Example 2
-------------------------------------------------------------
Postel [Page 7]
August 1982 RFC 821
Simple Mail Transfer Protocol
3.3. VERIFYING AND EXPANDING
SMTP provides as additional features, commands to verify a user
name or expand a mailing list. This is done with the VRFY and
EXPN commands, which have character string arguments. For the
VRFY command, the string is a user name, and the response may
include the full name of the user and must include the mailbox of
the user. For the EXPN command, the string identifies a mailing
list, and the multiline response may include the full name of the
users and must give the mailboxes on the mailing list.
"User name" is a fuzzy term and used purposely. If a host
implements the VRFY or EXPN commands then at least local mailboxes
must be recognized as "user names". If a host chooses to
recognize other strings as "user names" that is allowed.
In some hosts the distinction between a mailing list and an alias
for a single mailbox is a bit fuzzy, since a common data structure
may hold both types of entries, and it is possible to have mailing
lists of one mailbox. If a request is made to verify a mailing
list a positive response can be given if on receipt of a message
so addressed it will be delivered to everyone on the list,
otherwise an error should be reported (e.g., "550 That is a
mailing list, not a user"). If a request is made to expand a user
name a positive response can be formed by returning a list
containing one name, or an error can be reported (e.g., "550 That
is a user name, not a mailing list").
In the case of a multiline reply (normal for EXPN) exactly one
mailbox is to be specified on each line of the reply. In the case
of an ambiguous request, for example, "VRFY Smith", where there
are two Smith's the response must be "553 User ambiguous".
The case of verifying a user name is straightforward as shown in
example 3.
[Page 8] Postel
RFC 821 August 1982
Simple Mail Transfer Protocol
-------------------------------------------------------------
Example of Verifying a User Name
Either
S: VRFY Smith
R: 250 Fred Smith <[email protected]>
Or
S: VRFY Smith
R: 251 User not local; will forward to <[email protected]>
Or
S: VRFY Jones
R: 550 String does not match anything.
Or
S: VRFY Jones
R: 551 User not local; please try <[email protected]>
Or
S: VRFY Gourzenkyinplatz
R: 553 User ambiguous.
Example 3
-------------------------------------------------------------
Postel [Page 9]
August 1982 RFC 821
Simple Mail Transfer Protocol
The case of expanding a mailbox list requires a multiline reply as
shown in example 4.
-------------------------------------------------------------
Example of Expanding a Mailing List
Either
S: EXPN Example-People
R: 250-Jon Postel <[email protected]>
R: 250-Fred Fonebone <[email protected]>
R: 250-Sam Q. Smith <[email protected]>
R: 250-Quincy Smith <@USC-ISIF.ARPA:[email protected]>
R: 250-<[email protected]>
R: 250 <[email protected]>
Or
S: EXPN Executive-Washroom-List
R: 550 Access Denied to You.
Example 4
-------------------------------------------------------------
The character string arguments of the VRFY and EXPN commands
cannot be further restricted due to the variety of implementations
of the user name and mailbox list concepts. On some systems it
may be appropriate for the argument of the EXPN command to be a
file name for a file containing a mailing list, but again there is
a variety of file naming conventions in the Internet.
The VRFY and EXPN commands are not included in the minimum
implementation (Section 4.5.1), and are not required to work
across relays when they are implemented.
[Page 10] Postel
RFC 821 August 1982
Simple Mail Transfer Protocol
3.4. SENDING AND MAILING
The main purpose of SMTP is to deliver messages to user's
mailboxes. A very similar service provided by some hosts is to
deliver messages to user's terminals (provided the user is active
on the host). The delivery to the user's mailbox is called
"mailing", the delivery to the user's terminal is called
"sending". Because in many hosts the implementation of sending is
nearly identical to the implementation of mailing these two
functions are combined in SMTP. However the sending commands are
not included in the required minimum implementation
(Section 4.5.1). Users should have the ability to control the
writing of messages on their terminals. Most hosts permit the
users to accept or refuse such messages.
The following three command are defined to support the sending
options. These are used in the mail transaction instead of the
MAIL command and inform the receiver-SMTP of the special semantics
of this transaction:
SEND <SP> FROM:<reverse-path> <CRLF>
The SEND command requires that the mail data be delivered to
the user's terminal. If the user is not active (or not
accepting terminal messages) on the host a 450 reply may
returned to a RCPT command. The mail transaction is
successful if the message is delivered the terminal.
SOML <SP> FROM:<reverse-path> <CRLF>
The Send Or MaiL command requires that the mail data be
delivered to the user's terminal if the user is active (and
accepting terminal messages) on the host. If the user is
not active (or not accepting terminal messages) then the
mail data is entered into the user's mailbox. The mail
transaction is successful if the message is delivered either
to the terminal or the mailbox.
SAML <SP> FROM:<reverse-path> <CRLF>
The Send And MaiL command requires that the mail data be
delivered to the user's terminal if the user is active (and
accepting terminal messages) on the host. In any case the
mail data is entered into the user's mailbox. The mail
transaction is successful if the message is delivered the
mailbox.
Postel [Page 11]
August 1982 RFC 821
Simple Mail Transfer Protocol
The same reply codes that are used for the MAIL commands are used
for these commands.
[Page 12] Postel
RFC 821 August 1982
Simple Mail Transfer Protocol
3.5. OPENING AND CLOSING
At the time the transmission channel is opened there is an
exchange to ensure that the hosts are communicating with the hosts
they think they are.
The following two commands are used in transmission channel
opening and closing:
HELO <SP> <domain> <CRLF>
QUIT <CRLF>
In the HELO command the host sending the command identifies
itself; the command may be interpreted as saying "Hello, I am
<domain>".
-------------------------------------------------------------
Example of Connection Opening
R: 220 BBN-UNIX.ARPA Simple Mail Transfer Service Ready
S: HELO USC-ISIF.ARPA
R: 250 BBN-UNIX.ARPA
Example 5
-------------------------------------------------------------
-------------------------------------------------------------
Example of Connection Closing
S: QUIT
R: 221 BBN-UNIX.ARPA Service closing transmission channel
Example 6
-------------------------------------------------------------
Postel [Page 13]
August 1982 RFC 821
Simple Mail Transfer Protocol
3.6. RELAYING
The forward-path may be a source route of the form
"@ONE,@TWO:JOE@THREE", where ONE, TWO, and THREE are hosts. This
form is used to emphasize the distinction between an address and a
route. The mailbox is an absolute address, and the route is
information about how to get there. The two concepts should not
be confused.
Conceptually the elements of the forward-path are moved to the
reverse-path as the message is relayed from one server-SMTP to
another. The reverse-path is a reverse source route, (i.e., a
source route from the current location of the message to the
originator of the message). When a server-SMTP deletes its
identifier from the forward-path and inserts it into the
reverse-path, it must use the name it is known by in the
environment it is sending into, not the environment the mail came
from, in case the server-SMTP is known by different names in
different environments.
If when the message arrives at an SMTP the first element of the
forward-path is not the identifier of that SMTP the element is not
deleted from the forward-path and is used to determine the next
SMTP to send the message to. In any case, the SMTP adds its own
identifier to the reverse-path.
Using source routing the receiver-SMTP receives mail to be relayed
to another server-SMTP The receiver-SMTP may accept or reject the
task of relaying the mail in the same way it accepts or rejects
mail for a local user. The receiver-SMTP transforms the command
arguments by moving its own identifier from the forward-path to
the beginning of the reverse-path. The receiver-SMTP then becomes
a sender-SMTP, establishes a transmission channel to the next SMTP
in the forward-path, and sends it the mail.
The first host in the reverse-path should be the host sending the
SMTP commands, and the first host in the forward-path should be
the host receiving the SMTP commands.
Notice that the forward-path and reverse-path appear in the SMTP
commands and replies, but not necessarily in the message. That
is, there is no need for these paths and especially this syntax to
appear in the "To:" , "From:", "CC:", etc. fields of the message
header.
If a server-SMTP has accepted the task of relaying the mail and
[Page 14] Postel
RFC 821 August 1982
Simple Mail Transfer Protocol
later finds that the forward-path is incorrect or that the mail
cannot be delivered for whatever reason, then it must construct an
"undeliverable mail" notification message and send it to the
originator of the undeliverable mail (as indicated by the
reverse-path).
This notification message must be from the server-SMTP at this
host. Of course, server-SMTPs should not send notification
messages about problems with notification messages. One way to
prevent loops in error reporting is to specify a null reverse-path
in the MAIL command of a notification message. When such a
message is relayed it is permissible to leave the reverse-path
null. A MAIL command with a null reverse-path appears as follows:
MAIL FROM:<>
An undeliverable mail notification message is shown in example 7.
This notification is in response to a message originated by JOE at
HOSTW and sent via HOSTX to HOSTY with instructions to relay it on
to HOSTZ. What we see in the example is the transaction between
HOSTY and HOSTX, which is the first step in the return of the
notification message.
Postel [Page 15]
August 1982 RFC 821
Simple Mail Transfer Protocol
-------------------------------------------------------------
Example Undeliverable Mail Notification Message
S: MAIL FROM:<>
R: 250 ok
S: RCPT TO:<@HOSTX.ARPA:[email protected]>
R: 250 ok
S: DATA
R: 354 send the mail data, end with .
S: Date: 23 Oct 81 11:22:33
S: From: [email protected]
S: To: [email protected]
S: Subject: Mail System Problem
S:
S: Sorry JOE, your message to [email protected] lost.
S: HOSTZ.ARPA said this:
S: "550 No Such User"