-
Notifications
You must be signed in to change notification settings - Fork 1
/
learning.py
584 lines (457 loc) · 24.5 KB
/
learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
# -*- coding: utf-8 -*-
__author__ = 'jjamjung'
import math
import os
import shutil
import time
from etc_methods import *
from layer_methods import *
from model import conv_seq2seq_model
from paths import UNK, BLK, PAD, EOS
def train(tr_sources, tr_targets, va_sources, va_targets, experiment, print_tag):
experiment.print_all_params()
# frequently used variables
max_len = experiment.max_len.value
batch_size = experiment.batch_size.value
num_target_vocabs = experiment.num_target_vocabs.value
dataset_size = len(tr_targets)
""" ========================== Preparing ========================== """
# Placeholders
x = tf.placeholder(tf.int32, shape=(None, max_len))
y = tf.placeholder(tf.int32, shape=(None, max_len))
gt = tf.placeholder(tf.int32, shape=(None, max_len))
gt_oh = tf.one_hot(gt, depth=num_target_vocabs, on_value=1., axis=-1)
is_training = tf.placeholder(tf.bool)
# Create graph
logits = conv_seq2seq_model(x, y, is_training, experiment)
# Cross_entropy, loss, prediction and error rates are defined.
prediction = tf.nn.softmax(logits)
cross_entropy = output_cross_entropy(logits, gt_oh)
loss = output_loss(cross_entropy)
# Learning rate decaying
learning_rate = tf.Variable(experiment.learning_rate.value,
trainable=False, name='learning_rate',
collections=[tf.GraphKeys.GLOBAL_VARIABLES, 'TO_SAVE'],
dtype=tf.float32)
decay_factor = tf.constant(experiment.learning_rate_decay_factor.value, dtype=tf.float32)
learning_rate_update = tf.assign(learning_rate, tf.multiply(learning_rate, decay_factor))
# Training step
train_op, grads_op, grad_var_list, step_var = make_train_op(learning_rate, loss)
# Create new directories for saving model experiment and summaries
summary_dir = experiment.initialize_directories()
# Summary ops
if experiment.summary_write.value:
tf.summary.scalar("loss", loss)
for gv in grad_var_list:
tf.summary.scalar(gv.name, grads_op[gv.name])
merged_summary_ops = tf.summary.merge_all() if experiment.summary_write.value else None
""" ========================== MAIN LOOP ========================== """
with tf.Session(
config=tf.ConfigProto(
gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=experiment.gpu_memory_fraction.value),
allow_soft_placement=True)) as sess:
# Variables initialization
sess.run(tf.global_variables_initializer())
# Saver
saver = make_saver(print_tag, experiment)
# Summary writer
summary_writer = tf.summary.FileWriter(summary_dir, sess.graph)
# For time cost check
start_time = time.time()
epoch_start_time, epoch_duration_time = time.time(), 0
# For learning rate adapting
avg_losses = 0.
losses_queue = []
# model selection
best_score = np.inf
best_step = 0
curr_index_in_epoch = 0 # for batch data sampling
total_step_num = experiment.get_total_step_num(dataset_size, batch_size)
tr_sources, tr_targets = dataset_shuffling(tr_sources, tr_targets)
for step in range(total_step_num)[sess.run(step_var):]:
# Batch sampling
batch_x, batch_gt = get_batch(tr_sources, tr_targets, curr_index_in_epoch, batch_size)
curr_index_in_epoch += batch_size
# Each epoch re-shuffling
if curr_index_in_epoch + batch_size >= dataset_size:
tr_sources, tr_targets = dataset_shuffling(tr_sources, tr_targets)
curr_index_in_epoch = 0
# Batch training : multi-steps or single-step learning
avg_losses += batch_training(batch_x, batch_gt,
ph_x=x, ph_y=y, ph_gt=gt, ph_is_training=is_training,
train_op=train_op, loss_op=loss, summary_op=merged_summary_ops,
session=sess, summary_writer=summary_writer,
experiment=experiment, current_step=step)
# Learning rate adapting
if experiment.time_to_check_loss(step):
avg_losses /= experiment.adapting_cycle_steps.value
current_learning_rate = learning_rate.eval(session=sess)
str_to_print = \
"Epoch %.2f, Step %d, LR: %.6f, AVG loss for %d-steps: %.3f" % \
(experiment.get_curr_epoch_in_float(step, dataset_size),
step, current_learning_rate, experiment.adapting_cycle_steps.value, avg_losses)
if len(losses_queue) > 0:
if experiment.learning_rate_decay_factor.value < 1.0:
if avg_losses > max(losses_queue):
sess.run(learning_rate_update)
str_to_print += ", Learning rate decaying..."
losses_queue.append(avg_losses)
if len(losses_queue) > experiment.adapting_queue_size.value:
del losses_queue[0]
avg_losses = 0.
print_with_tag(str_to_print, print_tag, 1)
if experiment.time_to_save_model(step, total_step_num, dataset_size):
curr_epoch_in_int = experiment.get_curr_epoch_in_int(step, dataset_size)
# Evaluation
va_results = evaluation(x=va_sources, gt=va_targets, ph_x=x, ph_y=y, ph_is_training=is_training,
prediction_op=prediction, session=sess,
experiment=experiment, print_tag=print_tag)
epoch_duration_time = time.time() - epoch_start_time
epoch_start_time = time.time()
str_to_print = \
"Epoch %.2f, Step %d, epoch_time_cost: %d" % \
(experiment.get_curr_epoch_in_float(step, dataset_size), step, epoch_duration_time)
str_to_print += ", " + eval_result_to_string(va_results, "VA")
# Model improvement
is_improved = va_results[1] < best_score
if is_improved:
str_to_print += ", IMPROVED! (Step: %d, Error: %.3f)" % (best_step, best_score * 100)
experiment.update_va_performances(va_results[0], va_results[1], curr_epoch_in_int)
best_score = va_results[1]
best_step = step
# Save the model checkpoint.
if experiment.model_parameter_saving.value:
checkpoint_path = \
os.path.join(
experiment.get_checkpoint_path(model_idx=experiment.model_id.value,
epoch=curr_epoch_in_int),
"model.ckpt")
saver.save(sess, checkpoint_path, global_step=step)
# Print evaluation results
print_with_tag(str_to_print, print_tag, 2)
training_time = time.time() - start_time
print_with_tag("", print_tag)
print_with_tag("Training complete -- epoch limit reached", print_tag, 1)
print_with_tag("Model: %d, Epoch: %d, VA_PER: %.3f%%, VA_WER: %.3f%%" %
(experiment.model_id.value, experiment.best_epoch.value,
experiment.va_per.value * 100, experiment.va_wer.value * 100),
print_tag, 1)
print_with_tag("The session ran for %.2fm" % (training_time / 60.), print_tag, 1)
print_with_tag("", print_tag, 1)
print_with_tag("", print_tag, 1)
experiment.finish_training()
def test(va_x, va_y, te_x, te_y, experiment, print_tag):
experiment.print_all_params()
# frequently used variables
max_len = experiment.max_len.value
# Placeholders
x = tf.placeholder(tf.int32, shape=(None, max_len))
y = tf.placeholder(tf.int32, shape=(None, max_len))
is_training = tf.placeholder(tf.bool)
# Create graph
logits = conv_seq2seq_model(x, y, is_training, experiment)
# Cross_entropy, loss, prediction and error rates are defined.
prediction = tf.nn.softmax(logits)
with tf.Session(
config=tf.ConfigProto(
gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=experiment.gpu_memory_fraction.value),
allow_soft_placement=True)) as sess:
# Variables initialization
sess.run(tf.global_variables_initializer())
# Saver
saver = make_saver(print_tag, experiment)
model_dir = os.path.join(experiment.checkpoint_base_path, str(experiment.model_id.value))
model_epoch_lists = sorted([int(me) for me in os.listdir(model_dir)])
best_score = np.inf
top_scores, top_epoch_index = np.array([np.inf] * 5), np.zeros(5)
whole_dirs = []
for me in model_epoch_lists:
# Restore variables
verbose, ckpt_dir = restore_variables(experiment, saver, sess, print_tag, epoch=me, for_eval=True)
whole_dirs.append(ckpt_dir)
if verbose == "SKIP":
continue
elif verbose == "FAIL":
return
# Evaluation
va_results = evaluation(x=va_x, gt=va_y, ph_x=x, ph_y=y, ph_is_training=is_training,
prediction_op=prediction, session=sess, experiment=experiment, print_tag=print_tag)
te_results = evaluation(x=te_x, gt=te_y, ph_x=x, ph_y=y, ph_is_training=is_training,
prediction_op=prediction, session=sess, experiment=experiment, print_tag=print_tag)
# Print results
print_with_tag("VA PER: %.3f%%, VA WER: %.3f%%, TE PER: %.3f%%, TE WER: %.3f%%" %
(va_results[0] * 100, va_results[1] * 100, te_results[0] * 100, te_results[1] * 100),
print_tag, 2)
print_with_tag("", print_tag)
is_improved = va_results[1] < best_score
if is_improved:
experiment.update_va_performances(va_results[0], va_results[1], me)
experiment.update_te_performances(te_results[0], te_results[1])
best_score = va_results[1]
is_top5 = va_results[1] < top_scores[-1]
if is_top5:
top_scores[-1] = va_results[1]
top_epoch_index[-1] = len(whole_dirs) - 1
sorted_args = np.argsort(top_scores)
top_scores = top_scores[sorted_args]
top_epoch_index = top_epoch_index[sorted_args]
print_with_tag("Selected model performances", print_tag, 1)
experiment.print_performances()
print_with_tag("", print_tag, 1)
print_with_tag("", print_tag, 1)
for i in range(len(whole_dirs)):
if i not in top_epoch_index:
shutil.rmtree(whole_dirs[i])
experiment.finish_test()
def evaluation(x, gt, ph_x, ph_y, ph_is_training, prediction_op, session, experiment, print_tag):
eval_results, str_logs = \
evaluate_greedy_inference(x, gt,
ph_x=ph_x,
ph_y=ph_y,
ph_is_training=ph_is_training,
prediction_op=prediction_op,
session=session,
batch_size=experiment.batch_size.value,
debugging=experiment.inference_debugging.value,
wrong_only=experiment.wrong_only_debugging.value,
experiment=experiment)
if len(str_logs) > 0:
print_with_tag("", print_tag, 2)
for log in str_logs:
print_with_tag(log, print_tag, 2)
return eval_results
def evaluate_greedy_inference(x, gt,
ph_x, ph_y, ph_is_training,
prediction_op,
session,
batch_size,
debugging=False,
wrong_only=False,
experiment=None):
total_step_num = int(math.ceil(float(gt.shape[0]) / batch_size))
total_phoneme_error, total_word_error = 0., 0.
total_phonemes, total_words = 0, 0
curr_index_in_epoch = 0
edit_distances = []
inference_log_list = []
true_false_log_list = []
ground_truth_list = []
source_sequence_list = []
seq_prediction_list = []
string_list = []
blk_id = experiment.get_target_blk_id()
for step in xrange(total_step_num):
batch_x, batch_gt = get_batch(x, gt, curr_index_in_epoch, batch_size)
curr_index_in_epoch += batch_size
batch_index_array = np.arange(len(batch_gt))
# sequence of predictions made by decoding procedure, shape: (# of instances, input length)
batch_prediction = np.zeros_like(batch_gt)
# equal shape with batch_prediction, 1 at blank positions and 0 at others.
batch_already_predicted_or_not = (batch_prediction == blk_id).astype(float)
batch_inference_logs = []
batch_sequence_prediction_logs = []
batch_true_false_logs = []
for pred_step in xrange(experiment.max_len.value):
# feed updated batch_prediction to ph_y
single_step_prediction = session.run(prediction_op,
feed_dict={ph_x: batch_x,
ph_y: batch_prediction,
ph_is_training: False})
# sequence of confidence values, shape: (# of instances, input length)
confidence_sequence = np.max(single_step_prediction, axis=2)
# if it is not the first prediction_op step,
# then confidence values at previous predicted indices are replaced with zero.
confidence_sequence = confidence_sequence * batch_already_predicted_or_not
# sequence of predictions, shape: (# of instances, input length)
prediction_sequence = np.argmax(single_step_prediction, axis=2)
batch_sequence_prediction_logs.append(prediction_sequence)
# shape: (# of instances)
batch_predicted_index = np.argmax(confidence_sequence, axis=1)
batch_tf = None
if debugging:
batch_tf = \
prediction_sequence[batch_index_array, batch_predicted_index] == \
batch_gt[batch_index_array, batch_predicted_index]
# only prediction_op at the selected index is assigned
batch_prediction[batch_index_array, batch_predicted_index] = \
prediction_sequence[batch_index_array, batch_predicted_index]
# update already predicted or not table
batch_already_predicted_or_not[batch_index_array, batch_predicted_index] = 0.
if debugging:
batch_true_false_logs.append(batch_tf)
batch_inference_logs.append(np.copy(batch_prediction))
if debugging:
# inference_logs, list of np.ndarray
ilog = batch_inference_logs[-1]
batch_inference_logs = np.swapaxes(np.array(batch_inference_logs), axis1=0, axis2=1)
# inference_logs, shape: (batch_size, pred_step, sequence)
batch_true_false_logs = np.swapaxes(np.array(batch_true_false_logs), axis1=0, axis2=1)
# true_false_logs, shape: (batch_size, pred_step)
batch_sequence_prediction_logs = np.swapaxes(np.array(batch_sequence_prediction_logs), axis1=0, axis2=1)
if wrong_only:
debug_index = (ilog != batch_gt).any(axis=1)
batch_inference_logs = batch_inference_logs[debug_index, :, :]
batch_true_false_logs = batch_true_false_logs[debug_index, :]
ground_truth_list.append(batch_gt[debug_index, :])
source_sequence_list.append(batch_x[debug_index, :])
batch_sequence_prediction_logs = batch_sequence_prediction_logs[debug_index, :, :]
else:
ground_truth_list.append(batch_gt)
source_sequence_list.append(batch_x[:, :])
inference_log_list.append(batch_inference_logs)
true_false_log_list.append(batch_true_false_logs)
seq_prediction_list.append(batch_sequence_prediction_logs)
edit_distances += compute_batch_edit_distances_for_decoding(source_arr=batch_x,
prediction_arr=batch_prediction,
ground_truth_arr=batch_gt,
experiment=experiment)
if debugging:
inference_logs = np.concatenate(inference_log_list)
true_false_logs = np.concatenate(true_false_log_list)
ground_truths = np.concatenate(ground_truth_list)
source_sequences = np.concatenate(source_sequence_list)
seq_predictions = np.concatenate(seq_prediction_list)
random_order = np.arange(len(inference_logs))
np.random.shuffle(random_order)
random_order = random_order[:10]
inference_logs = inference_logs[random_order]
true_false_logs = true_false_logs[random_order]
ground_truths = ground_truths[random_order]
source_sequences = source_sequences[random_order]
seq_predictions = seq_predictions[random_order]
if experiment is not None:
to_parse = {UNK, PAD, BLK, EOS}
source_vocab = {k: str(v)[1:] if str(v) in to_parse else str(v) for k, v in
experiment.source_idx2char.value.items()}
source_vocab = {k: v + ('_' * (3 - len(v))) for k, v in source_vocab.items()}
source_vocab = {k: '***' if v == 'PAD' else v for k, v in source_vocab.items()}
source_vocab = {k: '___' if v == 'BLK' else v for k, v in source_vocab.items()}
target_vocab = {k: str(v)[1:] if str(v) in to_parse else str(v) for k, v in
experiment.target_idx2char.value.items()}
target_vocab = {k: v + ('_' * (3 - len(v))) for k, v in target_vocab.items()}
target_vocab = {k: '***' if v == 'PAD' else v for k, v in target_vocab.items()}
target_vocab = {k: '___' if v == 'BLK' else v for k, v in target_vocab.items()}
inference_logs = ids_to_symbols(inference_logs, target_vocab)
ground_truths = ids_to_symbols(ground_truths, target_vocab)
source_sequences = ids_to_symbols(source_sequences, source_vocab)
seq_predictions = ids_to_symbols(seq_predictions, target_vocab)
else:
inference_logs = ids_to_strings(inference_logs)
ground_truths = ids_to_strings(ground_truths)
source_sequences = ids_to_strings(source_sequences)
seq_predictions = ids_to_strings(seq_predictions)
for i in range(len(inference_logs)):
for j in range(len(inference_logs[i])):
string_list.append(
"%s: %s" % ('T' if true_false_logs[i][j] else 'F', ' '.join(inference_logs[i][j])) +
"\t%s" % (' '.join(seq_predictions[i][j]))
)
string_list.append('O: %s' % ' '.join(ground_truths[i]))
string_list.append('W: %s' % ' '.join(source_sequences[i]))
string_list.append("")
edit_distances.sort()
# Aggregate the edit distances for each word
word_to_edit = {}
for edit_distance in edit_distances:
word, distance, target_seq_len = edit_distance
word = tuple(word)
if word in word_to_edit:
word_to_edit[word].append((distance, target_seq_len))
else:
word_to_edit[word] = [(distance, target_seq_len)]
total_words = len(word_to_edit)
for word in word_to_edit:
# Pick the ground truth that's closest to output since their can be
# multiple pronunciations
distance, target_seq_len = min(word_to_edit[word])
if distance != 0:
total_word_error += 1
total_phoneme_error += distance
total_phonemes += target_seq_len
total_phoneme_error /= total_phonemes
total_word_error /= total_words
return (total_phoneme_error, total_word_error), string_list
def batch_training(batch_x, batch_gt,
ph_x, ph_y, ph_gt, ph_is_training,
train_op, loss_op, summary_op,
session, summary_writer, experiment, current_step):
ops_to_run = [train_op, loss_op]
summary_write = experiment.time_to_summarize(current_step)
if summary_write:
ops_to_run.append(summary_op)
batch_results = \
session.run(ops_to_run,
feed_dict={ph_x: batch_x,
ph_y: prepare_y(batch_gt, drop_whole_seq=False),
ph_gt: batch_gt,
ph_is_training: True})
if summary_write:
summary_writer.add_summary(batch_results[-1], current_step)
return batch_results[1]
def restore_variables(experiment, saver, session, print_tag, epoch, for_eval=True):
# Restore variables
if for_eval:
target_model_id = experiment.model_id.value
else:
target_model_id = experiment.model_id_to_load.value
ckpt_path = experiment.get_checkpoint_path(target_model_id, epoch)
ckpt_files = os.listdir(ckpt_path)
if len(ckpt_files) < 4:
return "SKIP", ckpt_path
ckpt = tf.train.get_checkpoint_state(ckpt_path)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(session, ckpt.model_checkpoint_path)
print_with_tag("Successfully restored model: %d, epoch: %d" % (target_model_id, epoch),
print_tag, 1)
return "SUCCESS", ckpt_path
else:
print_with_tag("No checkpoint file found", print_tag, 1)
return "FAIL", ckpt_path
def make_saver(print_tag, experiment):
variables_to_be_restored = \
tf.trainable_variables() + tf.moving_average_variables() + tf.get_collection('TO_SAVE')
print_with_tag(str(", ".join([v.name for v in variables_to_be_restored])), print_tag, 1)
experiment.model_size.value = check_model_size(print_tag)
return tf.train.Saver(variables_to_be_restored, max_to_keep=1)
def make_train_op(learning_rate, loss):
# Optimizer operation is defined
step_var = tf.Variable(0, trainable=False, name='step', collections=[tf.GraphKeys.GLOBAL_VARIABLES, 'TO_SAVE'])
optimizer = tf.train.AdamOptimizer(learning_rate)
trainable_vars = tf.trainable_variables()
trainable_vars_wo_emb = filter(lambda v: 'embedding' not in v.name, trainable_vars)
grads_and_vars = optimizer.compute_gradients(loss, var_list=trainable_vars)
apply_gradients = optimizer.apply_gradients(grads_and_vars, global_step=step_var)
grads_and_vars_wo_emb = optimizer.compute_gradients(loss, var_list=trainable_vars_wo_emb)
grads_dict = {v.name: tf.reduce_mean(tf.abs(grads_and_vars_wo_emb[i][0]))
for i, v in enumerate(trainable_vars_wo_emb)}
# Update moving averages with training
ema_updates = tf.get_collection(UPDATE_OPS_COLLECTION)
ema_updates_op = tf.group(*ema_updates)
return tf.group(apply_gradients, ema_updates_op), grads_dict, trainable_vars_wo_emb, step_var
def output_loss(cross_entropy):
regularization_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
sum_of_reg_loss = tf.add_n(regularization_loss)
return tf.add(cross_entropy, sum_of_reg_loss)
def output_cross_entropy(logits_op, onehot_gt):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits_op, labels=onehot_gt))
return cross_entropy
def prepare_y(input_gt, drop_whole_seq=False):
if drop_whole_seq:
# use whole dropped sequence.
return all_drop(input_gt)
else:
# use random dropped sequence.
return random_drop(input_gt)
def check_model_size(print_tag):
model_size = 0
size_dict = {}
for tr_var in tf.trainable_variables():
var_shape = tr_var.get_shape().as_list()
temp_size = reduce(lambda x, y: x * y, var_shape)
size_dict[tr_var.name] = temp_size
model_size += reduce(lambda x, y: x * y, var_shape)
print_with_tag("model size: %d" % model_size, print_tag, 1)
for tr_var in tf.trainable_variables():
print_with_tag("%s: %d" % (tr_var.name, size_dict[tr_var.name]), print_tag, 2)
print_with_tag("", print_tag)
return model_size