forked from fchollet/deep-learning-models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
mobilenet.py
667 lines (584 loc) · 28.5 KB
/
mobilenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
"""MobileNet v1 models for Keras.
Code contributed by Somshubra Majumdar (@titu1994).
MobileNet is a general architecture and can be used for multiple use cases.
Depending on the use case, it can use different input layer size and
different width factors. This allows different width models to reduce
the number of multiply-adds and thereby
reduce inference cost on mobile devices.
MobileNets support any input size greater than 32 x 32, with larger image sizes
offering better performance.
The number of parameters and number of multiply-adds
can be modified by using the `alpha` parameter,
which increases/decreases the number of filters in each layer.
By altering the image size and `alpha` parameter,
all 16 models from the paper can be built, with ImageNet weights provided.
The paper demonstrates the performance of MobileNets using `alpha` values of
1.0 (also called 100 % MobileNet), 0.75, 0.5 and 0.25.
For each of these `alpha` values, weights for 4 different input image sizes
are provided (224, 192, 160, 128).
The following table describes the size and accuracy of the 100% MobileNet
on size 224 x 224:
----------------------------------------------------------------------------
Width Multiplier (alpha) | ImageNet Acc | Multiply-Adds (M) | Params (M)
----------------------------------------------------------------------------
| 1.0 MobileNet-224 | 70.6 % | 529 | 4.2 |
| 0.75 MobileNet-224 | 68.4 % | 325 | 2.6 |
| 0.50 MobileNet-224 | 63.7 % | 149 | 1.3 |
| 0.25 MobileNet-224 | 50.6 % | 41 | 0.5 |
----------------------------------------------------------------------------
The following table describes the performance of
the 100 % MobileNet on various input sizes:
------------------------------------------------------------------------
Resolution | ImageNet Acc | Multiply-Adds (M) | Params (M)
------------------------------------------------------------------------
| 1.0 MobileNet-224 | 70.6 % | 529 | 4.2 |
| 1.0 MobileNet-192 | 69.1 % | 529 | 4.2 |
| 1.0 MobileNet-160 | 67.2 % | 529 | 4.2 |
| 1.0 MobileNet-128 | 64.4 % | 529 | 4.2 |
------------------------------------------------------------------------
The weights for all 16 models are obtained and translated
from Tensorflow checkpoints found at
https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.md
# Reference
- [MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications](https://arxiv.org/pdf/1704.04861.pdf))
"""
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import warnings
import numpy as np
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Input
from keras.layers import Activation
from keras.layers import Dropout
from keras.layers import Reshape
from keras.layers import BatchNormalization
from keras.layers import GlobalAveragePooling2D
from keras.layers import GlobalMaxPooling2D
from keras.layers import Conv2D
from keras import initializers
from keras import regularizers
from keras import constraints
from keras.utils import conv_utils
from keras.utils.data_utils import get_file
from keras.engine.topology import get_source_inputs
from keras.engine import InputSpec
from keras.applications.imagenet_utils import _obtain_input_shape
from keras.applications.imagenet_utils import decode_predictions
from keras import backend as K
BASE_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.6/'
def relu6(x):
return K.relu(x, max_value=6)
def preprocess_input(x):
x /= 255.
x -= 0.5
x *= 2.
return x
class DepthwiseConv2D(Conv2D):
"""Depthwise separable 2D convolution.
Depthwise Separable convolutions consists in performing
just the first step in a depthwise spatial convolution
(which acts on each input channel separately).
The `depth_multiplier` argument controls how many
output channels are generated per input channel in the depthwise step.
# Arguments
kernel_size: An integer or tuple/list of 2 integers, specifying the
width and height of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the width and height.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: one of `"valid"` or `"same"` (case-insensitive).
depth_multiplier: The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to `filters_in * depth_multiplier`.
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
activation: Activation function to use
(see [activations](keras./activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
depthwise_initializer: Initializer for the depthwise kernel matrix
(see [initializers](keras./initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](keras./initializers.md)).
depthwise_regularizer: Regularizer function applied to
the depthwise kernel matrix
(see [regularizer](keras./regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](keras./regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](keras./regularizers.md)).
depthwise_constraint: Constraint function applied to
the depthwise kernel matrix
(see [constraints](keras./constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](keras./constraints.md)).
# Input shape
4D tensor with shape:
`[batch, channels, rows, cols]` if data_format='channels_first'
or 4D tensor with shape:
`[batch, rows, cols, channels]` if data_format='channels_last'.
# Output shape
4D tensor with shape:
`[batch, filters, new_rows, new_cols]` if data_format='channels_first'
or 4D tensor with shape:
`[batch, new_rows, new_cols, filters]` if data_format='channels_last'.
`rows` and `cols` values might have changed due to padding.
"""
def __init__(self,
kernel_size,
strides=(1, 1),
padding='valid',
depth_multiplier=1,
data_format=None,
activation=None,
use_bias=True,
depthwise_initializer='glorot_uniform',
bias_initializer='zeros',
depthwise_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
depthwise_constraint=None,
bias_constraint=None,
**kwargs):
super(DepthwiseConv2D, self).__init__(
filters=None,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
activation=activation,
use_bias=use_bias,
bias_regularizer=bias_regularizer,
activity_regularizer=activity_regularizer,
bias_constraint=bias_constraint,
**kwargs)
self.depth_multiplier = depth_multiplier
self.depthwise_initializer = initializers.get(depthwise_initializer)
self.depthwise_regularizer = regularizers.get(depthwise_regularizer)
self.depthwise_constraint = constraints.get(depthwise_constraint)
self.bias_initializer = initializers.get(bias_initializer)
def build(self, input_shape):
if len(input_shape) < 4:
raise ValueError('Inputs to `DepthwiseConv2D` should have rank 4. '
'Received input shape:', str(input_shape))
if self.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = 3
if input_shape[channel_axis] is None:
raise ValueError('The channel dimension of the inputs to '
'`DepthwiseConv2D` '
'should be defined. Found `None`.')
input_dim = int(input_shape[channel_axis])
depthwise_kernel_shape = (self.kernel_size[0],
self.kernel_size[1],
input_dim,
self.depth_multiplier)
self.depthwise_kernel = self.add_weight(
shape=depthwise_kernel_shape,
initializer=self.depthwise_initializer,
name='depthwise_kernel',
regularizer=self.depthwise_regularizer,
constraint=self.depthwise_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(input_dim * self.depth_multiplier,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
# Set input spec.
self.input_spec = InputSpec(ndim=4, axes={channel_axis: input_dim})
self.built = True
def call(self, inputs, training=None):
outputs = K.depthwise_conv2d(
inputs,
self.depthwise_kernel,
strides=self.strides,
padding=self.padding,
dilation_rate=self.dilation_rate,
data_format=self.data_format)
if self.bias:
outputs = K.bias_add(
outputs,
self.bias,
data_format=self.data_format)
if self.activation is not None:
return self.activation(outputs)
return outputs
def compute_output_shape(self, input_shape):
if self.data_format == 'channels_first':
rows = input_shape[2]
cols = input_shape[3]
out_filters = input_shape[1] * self.depth_multiplier
elif self.data_format == 'channels_last':
rows = input_shape[1]
cols = input_shape[2]
out_filters = input_shape[3] * self.depth_multiplier
rows = conv_utils.conv_output_length(rows, self.kernel_size[0],
self.padding,
self.strides[0])
cols = conv_utils.conv_output_length(cols, self.kernel_size[1],
self.padding,
self.strides[1])
if self.data_format == 'channels_first':
return (input_shape[0], out_filters, rows, cols)
elif self.data_format == 'channels_last':
return (input_shape[0], rows, cols, out_filters)
def get_config(self):
config = super(DepthwiseConv2D, self).get_config()
config.pop('filters')
config.pop('kernel_initializer')
config.pop('kernel_regularizer')
config.pop('kernel_constraint')
config['depth_multiplier'] = self.depth_multiplier
config['depthwise_initializer'] = initializers.serialize(self.depthwise_initializer)
config['depthwise_regularizer'] = regularizers.serialize(self.depthwise_regularizer)
config['depthwise_constraint'] = constraints.serialize(self.depthwise_constraint)
return config
def MobileNet(input_shape=None,
alpha=1.0,
depth_multiplier=1,
dropout=1e-3,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000):
"""Instantiates the MobileNet architecture.
Note that only TensorFlow is supported for now,
therefore it only works with the data format
`image_data_format='channels_last'` in your Keras config
at `~/.keras/keras.json`.
To load a MobileNet model via `load_model`, import the custom
objects `relu6` and `DepthwiseConv2D` and pass them to the
`custom_objects` parameter.
E.g.
model = load_model('mobilenet.h5', custom_objects={
'relu6': mobilenet.relu6,
'DepthwiseConv2D': mobilenet.DepthwiseConv2D})
# Arguments
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)` (with `channels_last` data format)
or (3, 224, 224) (with `channels_first` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
alpha: controls the width of the network.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
depth_multiplier: depth multiplier for depthwise convolution
(also called the resolution multiplier)
dropout: dropout rate
include_top: whether to include the fully-connected
layer at the top of the network.
weights: `None` (random initialization) or
`imagenet` (ImageNet weights)
input_tensor: optional Keras tensor (i.e. output of
`layers.Input()`)
to use as image input for the model.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model
will be the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a
2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
RuntimeError: If attempting to run this model with a
backend that does not support separable convolutions.
"""
if K.backend() != 'tensorflow':
raise RuntimeError('Only Tensorflow backend is currently supported, '
'as other backends do not support '
'depthwise convolution.')
if weights not in {'imagenet', None}:
raise ValueError('The `weights` argument should be either '
'`None` (random initialization) or `imagenet` '
'(pre-training on ImageNet).')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as ImageNet with `include_top` '
'as true, `classes` should be 1000')
# Determine proper input shape.
input_shape = _obtain_input_shape(input_shape,
default_size=224,
min_size=32,
data_format=K.image_data_format(),
include_top=include_top or weights)
if K.image_data_format() == 'channels_last':
row_axis, col_axis = (0, 1)
else:
row_axis, col_axis = (1, 2)
rows = input_shape[row_axis]
cols = input_shape[col_axis]
if weights == 'imagenet':
if depth_multiplier != 1:
raise ValueError('If imagenet weights are being loaded, '
'depth multiplier must be 1')
if alpha not in [0.25, 0.50, 0.75, 1.0]:
raise ValueError('If imagenet weights are being loaded, '
'alpha can be one of'
'`0.25`, `0.50`, `0.75` or `1.0` only.')
if rows != cols or rows not in [128, 160, 192, 224]:
raise ValueError('If imagenet weights are being loaded, '
'input must have a static square shape (one of '
'(128,128), (160,160), (192,192), or (224, 224)).'
' Input shape provided = %s' % (input_shape,))
if K.image_data_format() != 'channels_last':
warnings.warn('The MobileNet family of models is only available '
'for the input data format "channels_last" '
'(width, height, channels). '
'However your settings specify the default '
'data format "channels_first" (channels, width, height).'
' You should set `image_data_format="channels_last"` '
'in your Keras config located at ~/.keras/keras.json. '
'The model being returned right now will expect inputs '
'to follow the "channels_last" data format.')
K.set_image_data_format('channels_last')
old_data_format = 'channels_first'
else:
old_data_format = None
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
x = _conv_block(img_input, 32, alpha, strides=(2, 2))
x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)
x = _depthwise_conv_block(x, 128, alpha, depth_multiplier,
strides=(2, 2), block_id=2)
x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)
x = _depthwise_conv_block(x, 256, alpha, depth_multiplier,
strides=(2, 2), block_id=4)
x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier,
strides=(2, 2), block_id=6)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)
x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier,
strides=(2, 2), block_id=12)
x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)
if include_top:
if K.image_data_format() == 'channels_first':
shape = (int(1024 * alpha), 1, 1)
else:
shape = (1, 1, int(1024 * alpha))
x = GlobalAveragePooling2D()(x)
x = Reshape(shape, name='reshape_1')(x)
x = Dropout(dropout, name='dropout')(x)
x = Conv2D(classes, (1, 1),
padding='same', name='conv_preds')(x)
x = Activation('softmax', name='act_softmax')(x)
x = Reshape((classes,), name='reshape_2')(x)
else:
if pooling == 'avg':
x = GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = GlobalMaxPooling2D()(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows))
# load weights
if weights == 'imagenet':
if K.image_data_format() == 'channels_first':
raise ValueError('Weights for "channels_last" format '
'are not available.')
if alpha == 1.0:
alpha_text = '1_0'
elif alpha == 0.75:
alpha_text = '7_5'
elif alpha == 0.50:
alpha_text = '5_0'
else:
alpha_text = '2_5'
if include_top:
model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
weigh_path = BASE_WEIGHT_PATH + model_name
weights_path = get_file(model_name,
weigh_path,
cache_subdir='models')
else:
model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
weigh_path = BASE_WEIGHT_PATH + model_name
weights_path = get_file(model_name,
weigh_path,
cache_subdir='models')
model.load_weights(weights_path)
if old_data_format:
K.set_image_data_format(old_data_format)
return model
def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)):
"""Adds an initial convolution layer (with batch normalization and relu6).
# Arguments
inputs: Input tensor of shape `(rows, cols, 3)`
(with `channels_last` data format) or
(3, rows, cols) (with `channels_first` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(224, 224, 3)` would be one valid value.
filters: Integer, the dimensionality of the output space
(i.e. the number output of filters in the convolution).
alpha: controls the width of the network.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
kernel: An integer or tuple/list of 2 integers, specifying the
width and height of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the width and height.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
# Input shape
4D tensor with shape:
`(samples, channels, rows, cols)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, rows, cols, channels)` if data_format='channels_last'.
# Output shape
4D tensor with shape:
`(samples, filters, new_rows, new_cols)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, new_rows, new_cols, filters)` if data_format='channels_last'.
`rows` and `cols` values might have changed due to stride.
# Returns
Output tensor of block.
"""
channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
filters = int(filters * alpha)
x = Conv2D(filters, kernel,
padding='same',
use_bias=False,
strides=strides,
name='conv1')(inputs)
x = BatchNormalization(axis=channel_axis, name='conv1_bn')(x)
return Activation(relu6, name='conv1_relu')(x)
def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha,
depth_multiplier=1, strides=(1, 1), block_id=1):
"""Adds a depthwise convolution block.
A depthwise convolution block consists of a depthwise conv,
batch normalization, relu6, pointwise convolution,
batch normalization and relu6 activation.
# Arguments
inputs: Input tensor of shape `(rows, cols, channels)`
(with `channels_last` data format) or
(channels, rows, cols) (with `channels_first` data format).
pointwise_conv_filters: Integer, the dimensionality of the output space
(i.e. the number output of filters in the pointwise convolution).
alpha: controls the width of the network.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
depth_multiplier: The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to `filters_in * depth_multiplier`.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the width and height.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
block_id: Integer, a unique identification designating the block number.
# Input shape
4D tensor with shape:
`(batch, channels, rows, cols)` if data_format='channels_first'
or 4D tensor with shape:
`(batch, rows, cols, channels)` if data_format='channels_last'.
# Output shape
4D tensor with shape:
`(batch, filters, new_rows, new_cols)` if data_format='channels_first'
or 4D tensor with shape:
`(batch, new_rows, new_cols, filters)` if data_format='channels_last'.
`rows` and `cols` values might have changed due to stride.
# Returns
Output tensor of block.
"""
channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
pointwise_conv_filters = int(pointwise_conv_filters * alpha)
x = DepthwiseConv2D((3, 3),
padding='same',
depth_multiplier=depth_multiplier,
strides=strides,
use_bias=False,
name='conv_dw_%d' % block_id)(inputs)
x = BatchNormalization(axis=channel_axis, name='conv_dw_%d_bn' % block_id)(x)
x = Activation(relu6, name='conv_dw_%d_relu' % block_id)(x)
x = Conv2D(pointwise_conv_filters, (1, 1),
padding='same',
use_bias=False,
strides=(1, 1),
name='conv_pw_%d' % block_id)(x)
x = BatchNormalization(axis=channel_axis, name='conv_pw_%d_bn' % block_id)(x)
return Activation(relu6, name='conv_pw_%d_relu' % block_id)(x)
if __name__ == '__main__':
for r in [128, 160, 192, 224]:
for a in [0.25, 0.50, 0.75, 1.0]:
if r == 224:
model = MobileNet(include_top=True, weights='imagenet',
input_shape=(r, r, 3), alpha=a)
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(r, r))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print('Input image shape:', x.shape)
preds = model.predict(x)
print(np.argmax(preds))
print('Predicted:', decode_predictions(preds, 1))
model = MobileNet(include_top=False, weights='imagenet')