-
Notifications
You must be signed in to change notification settings - Fork 57
/
TartanVO.py
110 lines (92 loc) · 4.27 KB
/
TartanVO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Software License Agreement (BSD License)
#
# Copyright (c) 2020, Wenshan Wang, Yaoyu Hu, CMU
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of CMU nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import torch
import numpy as np
import time
np.set_printoptions(precision=4, suppress=True, threshold=10000)
from Network.VONet import VONet
class TartanVO(object):
def __init__(self, model_name):
# import ipdb;ipdb.set_trace()
self.vonet = VONet()
# load the whole model
if model_name.endswith('.pkl'):
modelname = 'models/' + model_name
self.load_model(self.vonet, modelname)
self.vonet.cuda()
self.test_count = 0
self.pose_std = np.array([ 0.13, 0.13, 0.13, 0.013 , 0.013, 0.013], dtype=np.float32) # the output scale factor
self.flow_norm = 20 # scale factor for flow
def load_model(self, model, modelname):
preTrainDict = torch.load(modelname)
model_dict = model.state_dict()
preTrainDictTemp = {k:v for k,v in preTrainDict.items() if k in model_dict}
if( 0 == len(preTrainDictTemp) ):
print("Does not find any module to load. Try DataParallel version.")
for k, v in preTrainDict.items():
kk = k[7:]
if ( kk in model_dict ):
preTrainDictTemp[kk] = v
if ( 0 == len(preTrainDictTemp) ):
raise Exception("Could not load model from %s." % (modelname), "load_model")
model_dict.update(preTrainDictTemp)
model.load_state_dict(model_dict)
print('Model loaded...')
return model
def test_batch(self, sample):
self.test_count += 1
# import ipdb;ipdb.set_trace()
img0 = sample['img1'].cuda()
img1 = sample['img2'].cuda()
intrinsic = sample['intrinsic'].cuda()
inputs = [img0, img1, intrinsic]
self.vonet.eval()
with torch.no_grad():
starttime = time.time()
flow, pose = self.vonet(inputs)
inferencetime = time.time()-starttime
# import ipdb;ipdb.set_trace()
posenp = pose.data.cpu().numpy()
posenp = posenp * self.pose_std # The output is normalized during training, now scale it back
flownp = flow.data.cpu().numpy()
flownp = flownp * self.flow_norm
# calculate scale from GT posefile
if 'motion' in sample:
motions_gt = sample['motion']
scale = np.linalg.norm(motions_gt[:,:3], axis=1)
trans_est = posenp[:,:3]
trans_est = trans_est/np.linalg.norm(trans_est,axis=1).reshape(-1,1)*scale.reshape(-1,1)
posenp[:,:3] = trans_est
else:
print(' scale is not given, using 1 as the default scale value..')
print("{} Pose inference using {}s: \n{}".format(self.test_count, inferencetime, posenp))
return posenp, flownp