forked from juliandewit/kaggle_ndsb2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
step2_train_nodule_detector.py
411 lines (349 loc) · 18.8 KB
/
step2_train_nodule_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import settings
import helpers
import sys
import os
import glob
import random
import pandas
import ntpath
import cv2
import numpy
from typing import List, Tuple
from keras.optimizers import Adam, SGD
from keras.layers import Input, Convolution2D, MaxPooling2D, UpSampling2D, merge, Convolution3D, MaxPooling3D, UpSampling3D, LeakyReLU, BatchNormalization, Flatten, Dense, Dropout, ZeroPadding3D, AveragePooling3D, Activation
from keras.models import Model, load_model, model_from_json
from keras.metrics import binary_accuracy, binary_crossentropy, mean_squared_error, mean_absolute_error
from keras import backend as K
from keras.callbacks import ModelCheckpoint, Callback, LearningRateScheduler
from scipy.ndimage.interpolation import map_coordinates
from scipy.ndimage.filters import gaussian_filter
import math
import shutil
# limit memory usage..
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5
set_session(tf.Session(config=config))
# zonder aug, 10:1 99 train, 97 test, 0.27 cross entropy, before commit 573
# 3 pools istead of 4 gives (bigger end layer) gives much worse validation accuray + logloss .. strange ?
# 32 x 32 x 32 lijkt het beter te doen dan 48 x 48 x 48..
K.set_image_dim_ordering("tf")
CUBE_SIZE = 32
MEAN_PIXEL_VALUE = settings.MEAN_PIXEL_VALUE_NODULE
POS_WEIGHT = 2
NEGS_PER_POS = 20
P_TH = 0.6
# POS_IMG_DIR = "luna16_train_cubes_pos"
LEARN_RATE = 0.001
USE_DROPOUT = False
def prepare_image_for_net3D(img):
img = img.astype(numpy.float32)
img -= MEAN_PIXEL_VALUE
img /= 255.
img = img.reshape(1, img.shape[0], img.shape[1], img.shape[2], 1)
return img
def get_train_holdout_files(fold_count, train_percentage=80, logreg=True, ndsb3_holdout=0, manual_labels=True, full_luna_set=False):
print("Get train/holdout files.")
# pos_samples = glob.glob(settings.BASE_DIR_SSD + "luna16_train_cubes_pos/*.png")
pos_samples = glob.glob(settings.BASE_DIR_SSD + "generated_traindata/luna16_train_cubes_lidc/*.png")
print("Pos samples: ", len(pos_samples))
pos_samples_manual = glob.glob(settings.BASE_DIR_SSD + "generated_traindata/luna16_train_cubes_manual/*_pos.png")
print("Pos samples manual: ", len(pos_samples_manual))
pos_samples += pos_samples_manual
random.shuffle(pos_samples)
train_pos_count = int((len(pos_samples) * train_percentage) / 100)
pos_samples_train = pos_samples[:train_pos_count]
pos_samples_holdout = pos_samples[train_pos_count:]
if full_luna_set:
pos_samples_train += pos_samples_holdout
if manual_labels:
pos_samples_holdout = []
ndsb3_list = glob.glob(settings.BASE_DIR_SSD + "generated_traindata/ndsb3_train_cubes_manual/*.png")
print("Ndsb3 samples: ", len(ndsb3_list))
pos_samples_ndsb3_fold = []
pos_samples_ndsb3_holdout = []
ndsb3_pos = 0
ndsb3_neg = 0
ndsb3_pos_holdout = 0
ndsb3_neg_holdout = 0
if manual_labels:
for file_path in ndsb3_list:
file_name = ntpath.basename(file_path)
parts = file_name.split("_")
if int(parts[4]) == 0 and parts[3] != "neg": # skip positive non-cancer-cases
continue
if fold_count == 3:
if parts[3] == "neg": # skip negative cases
continue
patient_id = parts[1]
patient_fold = helpers.get_patient_fold(patient_id) % fold_count
if patient_fold == ndsb3_holdout:
pos_samples_ndsb3_holdout.append(file_path)
if parts[3] == "neg":
ndsb3_neg_holdout += 1
else:
ndsb3_pos_holdout += 1
else:
pos_samples_ndsb3_fold.append(file_path)
print("In fold: ", patient_id)
if parts[3] == "neg":
ndsb3_neg += 1
else:
ndsb3_pos += 1
print(ndsb3_pos, " ndsb3 pos labels train")
print(ndsb3_neg, " ndsb3 neg labels train")
print(ndsb3_pos_holdout, " ndsb3 pos labels holdout")
print(ndsb3_neg_holdout, " ndsb3 neg labels holdout")
if manual_labels:
for times_ndsb3 in range(4): # make ndsb labels count 4 times just like in LIDC when 4 doctors annotated a nodule
pos_samples_train += pos_samples_ndsb3_fold
pos_samples_holdout += pos_samples_ndsb3_holdout
neg_samples_edge = glob.glob(settings.BASE_DIR_SSD + "generated_traindata/luna16_train_cubes_auto/*_edge.png")
print("Edge samples: ", len(neg_samples_edge))
# neg_samples_white = glob.glob(settings.BASE_DIR_SSD + "luna16_train_cubes_auto/*_white.png")
neg_samples_luna = glob.glob(settings.BASE_DIR_SSD + "generated_traindata/luna16_train_cubes_auto/*_luna.png")
print("Luna samples: ", len(neg_samples_luna))
# neg_samples = neg_samples_edge + neg_samples_white
neg_samples = neg_samples_edge + neg_samples_luna
random.shuffle(neg_samples)
train_neg_count = int((len(neg_samples) * train_percentage) / 100)
neg_samples_falsepos = []
for file_path in glob.glob(settings.BASE_DIR_SSD + "generated_traindata/luna16_train_cubes_auto/*_falsepos.png"):
neg_samples_falsepos.append(file_path)
print("Falsepos LUNA count: ", len(neg_samples_falsepos))
neg_samples_train = neg_samples[:train_neg_count]
neg_samples_train += neg_samples_falsepos + neg_samples_falsepos + neg_samples_falsepos
neg_samples_holdout = neg_samples[train_neg_count:]
if full_luna_set:
neg_samples_train += neg_samples_holdout
train_res = []
holdout_res = []
sets = [(train_res, pos_samples_train, neg_samples_train), (holdout_res, pos_samples_holdout, neg_samples_holdout)]
for set_item in sets:
pos_idx = 0
negs_per_pos = NEGS_PER_POS
res = set_item[0]
neg_samples = set_item[2]
pos_samples = set_item[1]
print("Pos", len(pos_samples))
ndsb3_pos = 0
ndsb3_neg = 0
for index, neg_sample_path in enumerate(neg_samples):
# res.append(sample_path + "/")
res.append((neg_sample_path, 0, 0))
if index % negs_per_pos == 0:
pos_sample_path = pos_samples[pos_idx]
file_name = ntpath.basename(pos_sample_path)
parts = file_name.split("_")
if parts[0].startswith("ndsb3manual"):
if parts[3] == "pos":
class_label = 1 # only take positive examples where we know there was a cancer..
cancer_label = int(parts[4])
assert cancer_label == 1
size_label = int(parts[5])
# print(parts[1], size_label)
assert class_label == 1
if size_label < 1:
print("huh ?")
assert size_label >= 1
ndsb3_pos += 1
else:
class_label = 0
size_label = 0
ndsb3_neg += 1
else:
class_label = int(parts[-2])
size_label = int(parts[-3])
assert class_label == 1
assert parts[-1] == "pos.png"
assert size_label >= 1
res.append((pos_sample_path, class_label, size_label))
pos_idx += 1
pos_idx %= len(pos_samples)
print("ndsb2 pos: ", ndsb3_pos)
print("ndsb2 neg: ", ndsb3_neg)
print("Train count: ", len(train_res), ", holdout count: ", len(holdout_res))
return train_res, holdout_res
def data_generator(batch_size, record_list, train_set):
batch_idx = 0
means = []
random_state = numpy.random.RandomState(1301)
while True:
img_list = []
class_list = []
size_list = []
if train_set:
random.shuffle(record_list)
CROP_SIZE = CUBE_SIZE
# CROP_SIZE = 48
for record_idx, record_item in enumerate(record_list):
#rint patient_dir
class_label = record_item[1]
size_label = record_item[2]
if class_label == 0:
cube_image = helpers.load_cube_img(record_item[0], 6, 8, 48)
# if train_set:
# # helpers.save_cube_img("c:/tmp/pre.png", cube_image, 8, 8)
# cube_image = random_rotate_cube_img(cube_image, 0.99, -180, 180)
#
# if train_set:
# if random.randint(0, 100) > 0.1:
# # cube_image = numpy.flipud(cube_image)
# cube_image = elastic_transform48(cube_image, 64, 8, random_state)
wiggle = 48 - CROP_SIZE - 1
indent_x = 0
indent_y = 0
indent_z = 0
if wiggle > 0:
indent_x = random.randint(0, wiggle)
indent_y = random.randint(0, wiggle)
indent_z = random.randint(0, wiggle)
cube_image = cube_image[indent_z:indent_z + CROP_SIZE, indent_y:indent_y + CROP_SIZE, indent_x:indent_x + CROP_SIZE]
if train_set:
if random.randint(0, 100) > 50:
cube_image = numpy.fliplr(cube_image)
if random.randint(0, 100) > 50:
cube_image = numpy.flipud(cube_image)
if random.randint(0, 100) > 50:
cube_image = cube_image[:, :, ::-1]
if random.randint(0, 100) > 50:
cube_image = cube_image[:, ::-1, :]
if CROP_SIZE != CUBE_SIZE:
cube_image = helpers.rescale_patient_images2(cube_image, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE))
assert cube_image.shape == (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)
else:
cube_image = helpers.load_cube_img(record_item[0], 8, 8, 64)
if train_set:
pass
current_cube_size = cube_image.shape[0]
indent_x = (current_cube_size - CROP_SIZE) / 2
indent_y = (current_cube_size - CROP_SIZE) / 2
indent_z = (current_cube_size - CROP_SIZE) / 2
wiggle_indent = 0
wiggle = current_cube_size - CROP_SIZE - 1
if wiggle > (CROP_SIZE / 2):
wiggle_indent = CROP_SIZE / 4
wiggle = current_cube_size - CROP_SIZE - CROP_SIZE / 2 - 1
if train_set:
indent_x = wiggle_indent + random.randint(0, wiggle)
indent_y = wiggle_indent + random.randint(0, wiggle)
indent_z = wiggle_indent + random.randint(0, wiggle)
indent_x = int(indent_x)
indent_y = int(indent_y)
indent_z = int(indent_z)
cube_image = cube_image[indent_z:indent_z + CROP_SIZE, indent_y:indent_y + CROP_SIZE, indent_x:indent_x + CROP_SIZE]
if CROP_SIZE != CUBE_SIZE:
cube_image = helpers.rescale_patient_images2(cube_image, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE))
assert cube_image.shape == (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)
if train_set:
if random.randint(0, 100) > 50:
cube_image = numpy.fliplr(cube_image)
if random.randint(0, 100) > 50:
cube_image = numpy.flipud(cube_image)
if random.randint(0, 100) > 50:
cube_image = cube_image[:, :, ::-1]
if random.randint(0, 100) > 50:
cube_image = cube_image[:, ::-1, :]
means.append(cube_image.mean())
img3d = prepare_image_for_net3D(cube_image)
if train_set:
if len(means) % 1000000 == 0:
print("Mean: ", sum(means) / len(means))
img_list.append(img3d)
class_list.append(class_label)
size_list.append(size_label)
batch_idx += 1
if batch_idx >= batch_size:
x = numpy.vstack(img_list)
y_class = numpy.vstack(class_list)
y_size = numpy.vstack(size_list)
yield x, {"out_class": y_class, "out_malignancy": y_size}
img_list = []
class_list = []
size_list = []
batch_idx = 0
def get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=None, features=False, mal=False) -> Model:
inputs = Input(shape=input_shape, name="input_1")
x = inputs
x = AveragePooling3D(pool_size=(2, 1, 1), strides=(2, 1, 1), border_mode="same")(x)
x = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same', name='conv1', subsample=(1, 1, 1))(x)
x = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), border_mode='valid', name='pool1')(x)
# 2nd layer group
x = Convolution3D(128, 3, 3, 3, activation='relu', border_mode='same', name='conv2', subsample=(1, 1, 1))(x)
x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool2')(x)
if USE_DROPOUT:
x = Dropout(p=0.3)(x)
# 3rd layer group
x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3a', subsample=(1, 1, 1))(x)
x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3b', subsample=(1, 1, 1))(x)
x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool3')(x)
if USE_DROPOUT:
x = Dropout(p=0.4)(x)
# 4th layer group
x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4a', subsample=(1, 1, 1))(x)
x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4b', subsample=(1, 1, 1),)(x)
x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool4')(x)
if USE_DROPOUT:
x = Dropout(p=0.5)(x)
last64 = Convolution3D(64, 2, 2, 2, activation="relu", name="last_64")(x)
out_class = Convolution3D(1, 1, 1, 1, activation="sigmoid", name="out_class_last")(last64)
out_class = Flatten(name="out_class")(out_class)
out_malignancy = Convolution3D(1, 1, 1, 1, activation=None, name="out_malignancy_last")(last64)
out_malignancy = Flatten(name="out_malignancy")(out_malignancy)
model = Model(input=inputs, output=[out_class, out_malignancy])
if load_weight_path is not None:
model.load_weights(load_weight_path, by_name=False)
model.compile(optimizer=SGD(lr=LEARN_RATE, momentum=0.9, nesterov=True), loss={"out_class": "binary_crossentropy", "out_malignancy": mean_absolute_error}, metrics={"out_class": [binary_accuracy, binary_crossentropy], "out_malignancy": mean_absolute_error})
if features:
model = Model(input=inputs, output=[last64])
model.summary(line_length=140)
return model
def step_decay(epoch):
res = 0.001
if epoch > 5:
res = 0.0001
print("learnrate: ", res, " epoch: ", epoch)
return res
def train(model_name, fold_count, train_full_set=False, load_weights_path=None, ndsb3_holdout=0, manual_labels=True):
batch_size = 16
train_files, holdout_files = get_train_holdout_files(train_percentage=80, ndsb3_holdout=ndsb3_holdout, manual_labels=manual_labels, full_luna_set=train_full_set, fold_count=fold_count)
# train_files = train_files[:100]
# holdout_files = train_files[:10]
train_gen = data_generator(batch_size, train_files, True)
holdout_gen = data_generator(batch_size, holdout_files, False)
for i in range(0, 10):
tmp = next(holdout_gen)
cube_img = tmp[0][0].reshape(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1)
cube_img = cube_img[:, :, :, 0]
cube_img *= 255.
cube_img += MEAN_PIXEL_VALUE
# helpers.save_cube_img("c:/tmp/img_" + str(i) + ".png", cube_img, 4, 8)
# print(tmp)
learnrate_scheduler = LearningRateScheduler(step_decay)
model = get_net(load_weight_path=load_weights_path)
holdout_txt = "_h" + str(ndsb3_holdout) if manual_labels else ""
if train_full_set:
holdout_txt = "_fs" + holdout_txt
checkpoint = ModelCheckpoint("workdir/model_" + model_name + "_" + holdout_txt + "_e" + "{epoch:02d}-{val_loss:.4f}.hd5", monitor='val_loss', verbose=1, save_best_only=not train_full_set, save_weights_only=False, mode='auto', period=1)
checkpoint_fixed_name = ModelCheckpoint("workdir/model_" + model_name + "_" + holdout_txt + "_best.hd5", monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)
model.fit_generator(train_gen, len(train_files) / 1, 12, validation_data=holdout_gen, nb_val_samples=len(holdout_files) / 1, callbacks=[checkpoint, checkpoint_fixed_name, learnrate_scheduler])
model.save("workdir/model_" + model_name + "_" + holdout_txt + "_end.hd5")
if __name__ == "__main__":
if True:
# model 1 on luna16 annotations. full set 1 versions for blending
train(train_full_set=True, load_weights_path=None, model_name="luna16_full", fold_count=-1, manual_labels=False)
if not os.path.exists("models/"):
os.mkdir("models")
shutil.copy("workdir/model_luna16_full__fs_best.hd5", "models/model_luna16_full__fs_best.hd5")
# model 2 on luna16 annotations + ndsb pos annotations. 3 folds (1st half, 2nd half of ndsb patients) 2 versions for blending
if True:
train(train_full_set=True, load_weights_path=None, ndsb3_holdout=0, manual_labels=True, model_name="luna_posnegndsb_v1", fold_count=2)
train(train_full_set=True, load_weights_path=None, ndsb3_holdout=1, manual_labels=True, model_name="luna_posnegndsb_v1", fold_count=2)
shutil.copy("workdir/model_luna_posnegndsb_v1__fs_h0_end.hd5", "models/model_luna_posnegndsb_v1__fs_h0_end.hd5")
shutil.copy("workdir/model_luna_posnegndsb_v1__fs_h1_end.hd5", "models/model_luna_posnegndsb_v1__fs_h1_end.hd5")
if True:
train(train_full_set=True, load_weights_path=None, ndsb3_holdout=0, manual_labels=True, model_name="luna_posnegndsb_v2", fold_count=2)
train(train_full_set=True, load_weights_path=None, ndsb3_holdout=1, manual_labels=True, model_name="luna_posnegndsb_v2", fold_count=2)
shutil.copy("workdir/model_luna_posnegndsb_v2__fs_h0_end.hd5", "models/model_luna_posnegndsb_v2__fs_h0_end.hd5")
shutil.copy("workdir/model_luna_posnegndsb_v2__fs_h1_end.hd5", "models/model_luna_posnegndsb_v2__fs_h1_end.hd5")