-
Notifications
You must be signed in to change notification settings - Fork 8
/
README.html
993 lines (983 loc) · 87.8 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
padding-top: 0px;
}
</style>
</head>
<body>
<!-- README.md is generated from README.Rmd. Please edit that file -->
<h1 id="spoccupancy-">spOccupancy
<a href="https://doserlab.com/files/spoccupancy-web/"><img role="img" src="" align="right" height="139" width="120" /></a></h1>
<p><a href="https://CRAN.R-project.org/package=spOccupancy"><img role="img" src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSIxMDgiIGhlaWdodD0iMjAiIGFyaWEtbGFiZWw9IkNSQU4gZG93bmxvYWRzIDIxSyI+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJiIiB4Mj0iMCIgeTI9IjEwMCUiPgogICAgPHN0b3Agb2Zmc2V0PSIwIiBzdG9wLWNvbG9yPSIjYmJiIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgICA8c3RvcCBvZmZzZXQ9IjEiIHN0b3Atb3BhY2l0eT0iLjEiLz4KICA8L2xpbmVhckdyYWRpZW50PgogIDxtYXNrIGlkPSJhIj4KICAgIDxyZWN0IHdpZHRoPSIxMDgiIGhlaWdodD0iMjAiIHJ4PSIzIiBmaWxsPSIjZmZmIi8+CiAgPC9tYXNrPgogIDxnIG1hc2s9InVybCgjYSkiPjxwYXRoIGZpbGw9IiM1NTUiIGQ9Ik0wIDBoNzB2MjBIMHoiLz4KICAgIDxwYXRoIGZpbGw9IiMwMDdlYzYiIGQ9Ik03MCAwaDM4djIwSDcweiIvPgogICAgPHBhdGggZmlsbD0idXJsKCNiKSIgZD0iTTAgMGgxMDh2MjBIMHoiLz4KICA8L2c+CiAgPGcgZmlsbD0iI2ZmZiIgdGV4dC1hbmNob3I9Im1pZGRsZSIKICAgICBmb250LWZhbWlseT0iRGVqYVZ1IFNhbnMsVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICA8dGV4dCB4PSIzNiIgeT0iMTUiIGZpbGw9IiMwMTAxMDEiIGZpbGwtb3BhY2l0eT0iLjMiPgogICAgICBkb3dubG9hZHMKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjM2IiB5PSIxNCI+CiAgICAgIGRvd25sb2FkcwogICAgPC90ZXh0PgogICAgPHRleHQgeD0iODgiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgMjFLCiAgICA8L3RleHQ+CiAgICA8dGV4dCB4PSI4OCIgeT0iMTQiPgogICAgICAyMUsKICAgIDwvdGV4dD4KICA8L2c+Cjwvc3ZnPg==" /></a>
<a href="https://CRAN.R-project.org/package=spOccupancy"><img role="img" aria-label="CRAN" src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgYXJpYS1sYWJlbD0iQ1JBTiAwLjcuNiI+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJiIiB4Mj0iMCIgeTI9IjEwMCUiPgogICAgPHN0b3Agb2Zmc2V0PSIwIiBzdG9wLWNvbG9yPSIjYmJiIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgICA8c3RvcCBvZmZzZXQ9IjEiIHN0b3Atb3BhY2l0eT0iLjEiLz4KICA8L2xpbmVhckdyYWRpZW50PgogIDxtYXNrIGlkPSJhIj4KICAgIDxyZWN0IHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgcng9IjMiIGZpbGw9IiNmZmYiLz4KICA8L21hc2s+CiAgPGcgbWFzaz0idXJsKCNhKSI+CiAgICA8cGF0aCBmaWxsPSIjNTU1IiBkPSJNMCAwaDQzdjIwSDB6Ii8+CiAgICA8cGF0aCBmaWxsPSIjNGMxIiBkPSJNNDMgMGg2M3YyMEg0M3oiLz4KICAgIDxwYXRoIGZpbGw9InVybCgjYikiIGQ9Ik0wIDBoODV2MjBIMHoiLz4KICA8L2c+CiAgPGcgZmlsbD0iI2ZmZiIgdGV4dC1hbmNob3I9Im1pZGRsZSIKICAgICBmb250LWZhbWlseT0iRGVqYVZ1IFNhbnMsVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICA8dGV4dCB4PSIyMS41IiB5PSIxNSIgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyI+CiAgICAgIENSQU4KICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjIxLjUiIHk9IjE0Ij4KICAgICAgQ1JBTgogICAgPC90ZXh0PgogICAgPHRleHQgeD0iNjMiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgMC43LjYKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjYzIiB5PSIxNCI+CiAgICAgIDAuNy42CiAgICA8L3RleHQ+CiAgPC9nPgo8L3N2Zz4=" alt="CRAN" /></a>
<a href="https://codecov.io/gh/biodiverse/spOccupancy?branch=main"><svg id="svg_0751cb25c61484fc1cb4" role="img" aria-label="Codecov test coverage" alt="Codecov test coverage" width="137" height="20" viewBox="0 0 137 20">
<linearGradient id="svg_0751cb25c61484fc1cb4_b" x2="0" y2="100%">
<stop offset="0" stop-color="#bbb" stop-opacity=".1"></stop>
<stop offset="1" stop-opacity=".1"></stop>
</linearGradient>
<mask id="svg_0751cb25c61484fc1cb4_a">
<rect width="137" height="20" rx="3" fill="#fff" />
</mask>
<g mask="url(#svg_0751cb25c61484fc1cb4_a)">
<path fill="#555" d="M0 0h76v20H0z" />
<path fill="#9f9f9f" d="M76 0h61v20H76z" />
<path fill="url(#svg_0751cb25c61484fc1cb4_b)" d="M0 0h137v20H0z" />
</g>
<g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="11">
<text x="46" y="15" fill="#010101" fill-opacity=".3">codecov</text>
<text x="46" y="14">codecov</text>
<text x="105.5" y="15" fill="#010101" fill-opacity=".3">unknown</text>
<text x="105.5" y="14">unknown</text>
</g>
<svg viewBox="161 -8 60 60">
<path d="M23.013 0C10.333.009.01 10.22 0 22.762v.058l3.914 2.275.053-.036a11.291 11.291 0 0 1 8.352-1.767 10.911 10.911 0 0 1 5.5 2.726l.673.624.38-.828c.368-.802.793-1.556 1.264-2.24.19-.276.398-.554.637-.851l.393-.49-.484-.404a16.08 16.08 0 0 0-7.453-3.466 16.482 16.482 0 0 0-7.705.449C7.386 10.683 14.56 5.016 23.03 5.01c4.779 0 9.272 1.84 12.651 5.18 2.41 2.382 4.069 5.35 4.807 8.591a16.53 16.53 0 0 0-4.792-.723l-.292-.002a16.707 16.707 0 0 0-1.902.14l-.08.012c-.28.037-.524.074-.748.115-.11.019-.218.041-.327.063-.257.052-.51.108-.75.169l-.265.067a16.39 16.39 0 0 0-.926.276l-.056.018c-.682.23-1.36.511-2.016.838l-.052.026c-.29.145-.584.305-.899.49l-.069.04a15.596 15.596 0 0 0-4.061 3.466l-.145.175c-.29.36-.521.666-.723.96-.17.247-.34.513-.552.864l-.116.199c-.17.292-.32.57-.449.824l-.03.057a16.116 16.116 0 0 0-.843 2.029l-.034.102a15.65 15.65 0 0 0-.786 5.174l.003.214a21.523 21.523 0 0 0 .04.754c.009.119.02.237.032.355.014.145.032.29.049.432l.01.08c.01.067.017.133.026.197.034.242.074.48.119.72.463 2.419 1.62 4.836 3.345 6.99l.078.098.08-.095c.688-.81 2.395-3.38 2.539-4.922l.003-.029-.014-.025a10.727 10.727 0 0 1-1.226-4.956c0-5.76 4.545-10.544 10.343-10.89l.381-.014a11.403 11.403 0 0 1 6.651 1.957l.054.036 3.862-2.237.05-.03v-.056c.006-6.08-2.384-11.793-6.729-16.089C34.932 2.361 29.16 0 23.013 0" fill="#F01F7A" fill-rule="evenodd" />
</svg></a></p>
<p>spOccupancy fits single-species, multi-species, and integrated
spatial occupancy models using Markov chain Monte Carlo (MCMC). Models
are fit using Pólya-Gamma data augmentation. Spatial models are fit
using either Gaussian processes or Nearest Neighbor Gaussian Processes
(NNGP) for large spatial datasets. The package provides functionality
for data integration of multiple single-species occupancy data sets
using a joint likelihood framework. For multi-species models,
spOccupancy provides functions to account for residual species
correlations in a joint species distribution model framework while
accounting for imperfect detection. <code>spOccupancy</code> also
provides functions for multi-season (i.e., spatio-temporal)
single-species occupancy models. Below we give a very brief introduction
to some of the package’s functionality, and illustrate just one of the
model fitting functions. For more information, see the resources
referenced at the bottom of this page.</p>
<h2 id="installation">Installation</h2>
<p>You can install the released version of <code>spOccupancy</code> from
<a href="https://CRAN.R-project.org">CRAN</a> with:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"spOccupancy"</span>)</span></code></pre></div>
<h2 id="functionality">Functionality</h2>
<table>
<thead>
<tr class="header">
<th><code>spOccupancy</code> Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>PGOcc()</code></td>
<td>Single-species occupancy model</td>
</tr>
<tr class="even">
<td><code>spPGOcc()</code></td>
<td>Single-species spatial occupancy model</td>
</tr>
<tr class="odd">
<td><code>intPGOcc()</code></td>
<td>Single-species occupancy model with multiple data sources</td>
</tr>
<tr class="even">
<td><code>spIntPGOcc()</code></td>
<td>Single-species spatial occupancy model with multiple data
sources</td>
</tr>
<tr class="odd">
<td><code>msPGOcc()</code></td>
<td>Multi-species occupancy model</td>
</tr>
<tr class="even">
<td><code>spMsPGOcc()</code></td>
<td>Multi-species spatial occupancy model</td>
</tr>
<tr class="odd">
<td><code>lfJSDM()</code></td>
<td>Joint species distribution model without imperfect detection</td>
</tr>
<tr class="even">
<td><code>sfJSDM()</code></td>
<td>Spatial joint species distribution model without imperfect
detection</td>
</tr>
<tr class="odd">
<td><code>lfMsPGOcc()</code></td>
<td>Multi-species occupancy model with species correlations</td>
</tr>
<tr class="even">
<td><code>sfMsPGOcc()</code></td>
<td>Multi-species spatial occupancy model with species correlations</td>
</tr>
<tr class="odd">
<td><code>intMsPGOcc()</code></td>
<td>Multi-species occupancy model with multiple data sources</td>
</tr>
<tr class="even">
<td><code>tPGOcc()</code></td>
<td>Single-species multi-season occupancy model</td>
</tr>
<tr class="odd">
<td><code>stPGOcc()</code></td>
<td>Single-species multi-season spatio-temporal occupancy model</td>
</tr>
<tr class="even">
<td><code>svcPGBinom()</code></td>
<td>Single-species spatially-varying coefficient GLM</td>
</tr>
<tr class="odd">
<td><code>svcPGOcc()</code></td>
<td>Single-species spatially-varying coefficient occupancy model</td>
</tr>
<tr class="even">
<td><code>svcTPGBinom()</code></td>
<td>Single-species spatially-varying coefficient multi-season GLM</td>
</tr>
<tr class="odd">
<td><code>svcTPGOcc()</code></td>
<td>Single-species spatially-varying coefficient multi-season occupancy
model</td>
</tr>
<tr class="even">
<td><code>svcMsPGOcc()</code></td>
<td>Multi-species spatially-varying coefficient occupancy model</td>
</tr>
<tr class="odd">
<td><code>tMsPGOcc()</code></td>
<td>Multi-species, multi-season occupancy model</td>
</tr>
<tr class="even">
<td><code>stMsPGOcc()</code></td>
<td>Multi-species, multi-season spatial occupancy model</td>
</tr>
<tr class="odd">
<td><code>svcTMsPGOcc()</code></td>
<td>Multi-species, multi-season spatially-varying coefficient occupancy
model</td>
</tr>
<tr class="even">
<td><code>tIntPGOcc()</code></td>
<td>Multi-season occupancy model with multiple data sources</td>
</tr>
<tr class="odd">
<td><code>stIntPGOcc()</code></td>
<td>Spatial multi-season occupancy model with multiple data sources</td>
</tr>
<tr class="even">
<td><code>svcTIntPGOcc()</code></td>
<td>SVC multi-season occupancy model with multiple data sources</td>
</tr>
<tr class="odd">
<td><code>postHocLM()</code></td>
<td>Fit a linear (mixed) model using estimates from a previous model
fit</td>
</tr>
<tr class="even">
<td><code>ppcOcc()</code></td>
<td>Posterior predictive check using Bayesian p-values</td>
</tr>
<tr class="odd">
<td><code>waicOcc()</code></td>
<td>Compute Widely Applicable Information Criterion (WAIC)</td>
</tr>
<tr class="even">
<td><code>updateMCMC()</code></td>
<td>Update an existing model object with more MCMC samples (in
development)</td>
</tr>
<tr class="odd">
<td><code>simOcc()</code></td>
<td>Simulate single-species occupancy data</td>
</tr>
<tr class="even">
<td><code>simTOcc()</code></td>
<td>Simulate single-species multi-season occupancy data</td>
</tr>
<tr class="odd">
<td><code>simBinom()</code></td>
<td>Simulate detection-nondetection data with perfect detection</td>
</tr>
<tr class="even">
<td><code>simTBinom()</code></td>
<td>Simulate multi-season detection-nondetection data with perfect
detection</td>
</tr>
<tr class="odd">
<td><code>simMsOcc()</code></td>
<td>Simulate multi-species occupancy data</td>
</tr>
<tr class="even">
<td><code>simTMsOcc()</code></td>
<td>Simulate multi-species, multi-season occupancy data</td>
</tr>
<tr class="odd">
<td><code>simIntOcc()</code></td>
<td>Simulate single-species occupancy data from multiple data
sources</td>
</tr>
<tr class="even">
<td><code>simIntMsOcc()</code></td>
<td>Simulate multi-species occupancy data from multiple data
sources</td>
</tr>
<tr class="odd">
<td><code>simTIntOcc()</code></td>
<td>Simulate multi-season occupancy data from multiple data sources</td>
</tr>
</tbody>
</table>
<h2 id="example-usage">Example usage</h2>
<h3 id="load-package-and-data">Load package and data</h3>
<p>To get started with <code>spOccupancy</code> we load the package and
an example data set. We use data on twelve foliage-gleaning birds from
the <a href="https://hubbardbrook.org/">Hubbard Brook Experimental
Forest</a>, which is available in the <code>spOccupancy</code> package
as the <code>hbef2015</code> object. Here we will only work with one
bird species, the black-throated blue warbler (BTBW), and so we subset
the <code>hbef2015</code> object to only include this species.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="fu">library</span>(spOccupancy)</span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a><span class="fu">data</span>(hbef2015)</span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a>sp.names <span class="ot"><-</span> <span class="fu">dimnames</span>(hbef2015<span class="sc">$</span>y)[[<span class="dv">1</span>]]</span>
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a>btbwHBEF <span class="ot"><-</span> hbef2015</span>
<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a>btbwHBEF<span class="sc">$</span>y <span class="ot"><-</span> btbwHBEF<span class="sc">$</span>y[sp.names <span class="sc">==</span> <span class="st">"BTBW"</span>, , ]</span></code></pre></div>
<h3 id="fit-a-spatial-occupancy-model-using-sppgocc">Fit a spatial
occupancy model using <code>spPGOcc()</code></h3>
<p>Below we fit a single-species spatial occupancy model to the BTBW
data using a Nearest Neighbor Gaussian Process. We use the default
priors and initial values for the occurrence (<code>beta</code>) and
detection (<code>alpha</code>) coefficients, the spatial variance
(<code>sigma.sq</code>), the spatial decay parameter (<code>phi</code>),
the spatial random effects (<code>w</code>), and the latent occurrence
values (<code>z</code>). We assume occurrence is a function of linear
and quadratic elevation along with a spatial random intercept. We model
detection as a function of linear and quadratic day of survey and linear
time of day the survey occurred.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="co"># Specify model formulas</span></span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a>btbw.occ.formula <span class="ot"><-</span> <span class="er">~</span> <span class="fu">scale</span>(Elevation) <span class="sc">+</span> <span class="fu">I</span>(<span class="fu">scale</span>(Elevation)<span class="sc">^</span><span class="dv">2</span>)</span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a>btbw.det.formula <span class="ot"><-</span> <span class="er">~</span> <span class="fu">scale</span>(day) <span class="sc">+</span> <span class="fu">scale</span>(tod) <span class="sc">+</span> <span class="fu">I</span>(<span class="fu">scale</span>(day)<span class="sc">^</span><span class="dv">2</span>)</span></code></pre></div>
<p>We run the model using an adaptive MCMC sampler with a target
acceptance rate of 0.43. We run 3 chains of the model for 20,000
iterations split into 800 batches each of length 25. For each chain, we
discard the first 8000 iterations as burn-in and use a thinning rate of
4 for a resulting 9000 samples from the joint posterior. We fit the
model using 5 nearest neighbors and an exponential correlation function.
We also specify the <code>k.fold</code> argument to perform 2-fold
cross-validation after fitting the full model. Run <code>?spPGOcc</code>
for more detailed information on all function arguments.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="co"># Run the model</span></span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a>out <span class="ot"><-</span> <span class="fu">spPGOcc</span>(<span class="at">occ.formula =</span> btbw.occ.formula,</span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a> <span class="at">det.formula =</span> btbw.det.formula,</span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a> <span class="at">data =</span> btbwHBEF, <span class="at">n.batch =</span> <span class="dv">800</span>, <span class="at">batch.length =</span> <span class="dv">25</span>,</span>
<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a> <span class="at">accept.rate =</span> <span class="fl">0.43</span>, <span class="at">cov.model =</span> <span class="st">"exponential"</span>, </span>
<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a> <span class="at">NNGP =</span> <span class="cn">TRUE</span>, <span class="at">n.neighbors =</span> <span class="dv">5</span>, <span class="at">n.burn =</span> <span class="dv">8000</span>, </span>
<span id="cb4-7"><a href="#cb4-7" tabindex="-1"></a> <span class="at">n.thin =</span> <span class="dv">4</span>, <span class="at">n.chains =</span> <span class="dv">3</span>, <span class="at">verbose =</span> <span class="cn">FALSE</span>, </span>
<span id="cb4-8"><a href="#cb4-8" tabindex="-1"></a> <span class="at">k.fold =</span> <span class="dv">2</span>, <span class="at">k.fold.threads =</span> <span class="dv">2</span>)</span></code></pre></div>
<p>This will produce a large output object, and you can use
<code>str(out)</code> to get an overview of what’s in there. Here we use
the <code>summary()</code> function to print a concise but informative
summary of the model fit.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">summary</span>(out)</span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a><span class="co">#> Call:</span></span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a><span class="co">#> spPGOcc(occ.formula = btbw.occ.formula, det.formula = btbw.det.formula, </span></span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a><span class="co">#> data = btbwHBEF, cov.model = "exponential", NNGP = TRUE, </span></span>
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a><span class="co">#> n.neighbors = 5, n.batch = 800, batch.length = 25, accept.rate = 0.43, </span></span>
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a><span class="co">#> verbose = FALSE, n.burn = 8000, n.thin = 4, n.chains = 3, </span></span>
<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a><span class="co">#> k.fold = 2, k.fold.threads = 2)</span></span>
<span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb5-10"><a href="#cb5-10" tabindex="-1"></a><span class="co">#> Samples per Chain: 20000</span></span>
<span id="cb5-11"><a href="#cb5-11" tabindex="-1"></a><span class="co">#> Burn-in: 8000</span></span>
<span id="cb5-12"><a href="#cb5-12" tabindex="-1"></a><span class="co">#> Thinning Rate: 4</span></span>
<span id="cb5-13"><a href="#cb5-13" tabindex="-1"></a><span class="co">#> Number of Chains: 3</span></span>
<span id="cb5-14"><a href="#cb5-14" tabindex="-1"></a><span class="co">#> Total Posterior Samples: 9000</span></span>
<span id="cb5-15"><a href="#cb5-15" tabindex="-1"></a><span class="co">#> Run Time (min): 1.3642</span></span>
<span id="cb5-16"><a href="#cb5-16" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb5-17"><a href="#cb5-17" tabindex="-1"></a><span class="co">#> Occurrence (logit scale): </span></span>
<span id="cb5-18"><a href="#cb5-18" tabindex="-1"></a><span class="co">#> Mean SD 2.5% 50% 97.5% Rhat ESS</span></span>
<span id="cb5-19"><a href="#cb5-19" tabindex="-1"></a><span class="co">#> (Intercept) 3.9946 0.5810 3.0233 3.9337 5.2932 1.0302 354</span></span>
<span id="cb5-20"><a href="#cb5-20" tabindex="-1"></a><span class="co">#> scale(Elevation) -0.5235 0.2193 -0.9785 -0.5145 -0.1082 1.0013 1368</span></span>
<span id="cb5-21"><a href="#cb5-21" tabindex="-1"></a><span class="co">#> I(scale(Elevation)^2) -1.1673 0.2117 -1.6341 -1.1489 -0.8003 1.0026 571</span></span>
<span id="cb5-22"><a href="#cb5-22" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb5-23"><a href="#cb5-23" tabindex="-1"></a><span class="co">#> Detection (logit scale): </span></span>
<span id="cb5-24"><a href="#cb5-24" tabindex="-1"></a><span class="co">#> Mean SD 2.5% 50% 97.5% Rhat ESS</span></span>
<span id="cb5-25"><a href="#cb5-25" tabindex="-1"></a><span class="co">#> (Intercept) 0.6621 0.1136 0.4429 0.6602 0.8872 1.0009 8235</span></span>
<span id="cb5-26"><a href="#cb5-26" tabindex="-1"></a><span class="co">#> scale(day) 0.2912 0.0701 0.1526 0.2910 0.4294 1.0019 9000</span></span>
<span id="cb5-27"><a href="#cb5-27" tabindex="-1"></a><span class="co">#> scale(tod) -0.0306 0.0699 -0.1672 -0.0299 0.1057 1.0025 9000</span></span>
<span id="cb5-28"><a href="#cb5-28" tabindex="-1"></a><span class="co">#> I(scale(day)^2) -0.0753 0.0861 -0.2456 -0.0753 0.0927 0.9999 9000</span></span>
<span id="cb5-29"><a href="#cb5-29" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb5-30"><a href="#cb5-30" tabindex="-1"></a><span class="co">#> Spatial Covariance: </span></span>
<span id="cb5-31"><a href="#cb5-31" tabindex="-1"></a><span class="co">#> Mean SD 2.5% 50% 97.5% Rhat ESS</span></span>
<span id="cb5-32"><a href="#cb5-32" tabindex="-1"></a><span class="co">#> sigma.sq 1.1864 0.9200 0.2306 0.9314 3.5575 1.0336 160</span></span>
<span id="cb5-33"><a href="#cb5-33" tabindex="-1"></a><span class="co">#> phi 0.0075 0.0075 0.0007 0.0044 0.0272 1.0668 111</span></span></code></pre></div>
<h3 id="posterior-predictive-check">Posterior predictive check</h3>
<p>The function <code>ppcOcc</code> performs a posterior predictive
check on the resulting list from the call to <code>spPGOcc</code>. For
binary data, we need to perform Goodness of Fit assessments on some
binned form of the data rather than the raw binary data. Below we
perform a posterior predictive check on the data grouped by site with a
Freeman-Tukey fit statistic, and then use the <code>summary</code>
function to summarize the check with a Bayesian p-value.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a>ppc.out <span class="ot"><-</span> <span class="fu">ppcOcc</span>(out, <span class="at">fit.stat =</span> <span class="st">'freeman-tukey'</span>, <span class="at">group =</span> <span class="dv">1</span>)</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a><span class="fu">summary</span>(ppc.out)</span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a><span class="co">#> Call:</span></span>
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a><span class="co">#> ppcOcc(object = out, fit.stat = "freeman-tukey", group = 1)</span></span>
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a><span class="co">#> Samples per Chain: 20000</span></span>
<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a><span class="co">#> Burn-in: 8000</span></span>
<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a><span class="co">#> Thinning Rate: 4</span></span>
<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a><span class="co">#> Number of Chains: 3</span></span>
<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a><span class="co">#> Total Posterior Samples: 9000</span></span>
<span id="cb6-12"><a href="#cb6-12" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb6-13"><a href="#cb6-13" tabindex="-1"></a><span class="co">#> Bayesian p-value: 0.4833 </span></span>
<span id="cb6-14"><a href="#cb6-14" tabindex="-1"></a><span class="co">#> Fit statistic: freeman-tukey</span></span></code></pre></div>
<h3 id="model-selection-using-waic-and-k-fold-cross-validation">Model
selection using WAIC and k-fold cross-validation</h3>
<p>The <code>waicOcc</code> function computes the Widely Applicable
Information Criterion (WAIC) for use in model selection and assessment
(note that due to Monte Carlo error your results will differ
slightly).</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a><span class="fu">waicOcc</span>(out)</span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a><span class="co">#> elpd pD WAIC </span></span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="co">#> -680.80100 21.87208 1405.34616</span></span></code></pre></div>
<p>Alternatively, we can perform k-fold cross-validation (CV) directly
in our call to <code>spPGOcc</code> using the <code>k.fold</code>
argument and compare models using a deviance scoring rule. We fit the
model with <code>k.fold = 2</code> and so below we access the deviance
scoring rule from the 2-fold cross-validation. If we have additional
candidate models to compare this model with, then we might select for
inference the one with the lowest value of this CV score.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a>out<span class="sc">$</span>k.fold.deviance</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a><span class="co">#> [1] 1414.027</span></span></code></pre></div>
<h3 id="prediction">Prediction</h3>
<p>Prediction is possible using the <code>predict</code> function, a set
of occurrence covariates at the new locations, and the spatial
coordinates of the new locations. The object <code>hbefElev</code>
contains elevation data across the entire Hubbard Brook Experimental
Forest. Below we predict BTBW occurrence across the forest, which are
stored in the <code>out.pred</code> object.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a><span class="co"># First standardize elevation using mean and sd from fitted model</span></span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a>elev.pred <span class="ot"><-</span> (hbefElev<span class="sc">$</span>val <span class="sc">-</span> <span class="fu">mean</span>(btbwHBEF<span class="sc">$</span>occ.covs[, <span class="dv">1</span>])) <span class="sc">/</span> <span class="fu">sd</span>(btbwHBEF<span class="sc">$</span>occ.covs[, <span class="dv">1</span>])</span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a>coords<span class="fl">.0</span> <span class="ot"><-</span> <span class="fu">as.matrix</span>(hbefElev[, <span class="fu">c</span>(<span class="st">'Easting'</span>, <span class="st">'Northing'</span>)])</span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a>X<span class="fl">.0</span> <span class="ot"><-</span> <span class="fu">cbind</span>(<span class="dv">1</span>, elev.pred, elev.pred<span class="sc">^</span><span class="dv">2</span>)</span>
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a>out.pred <span class="ot"><-</span> <span class="fu">predict</span>(out, X<span class="fl">.0</span>, coords<span class="fl">.0</span>, <span class="at">verbose =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
<h2 id="learn-more">Learn more</h2>
<p>The <code>vignette("modelFitting")</code> provides a more detailed
description and tutorial of the core functions in
<code>spOccupancy</code>. For full statistical details on the MCMC
samplers for core functions in <code>spOccupancy</code>, see
<code>vignette("mcmcSamplers")</code>. In addition, see <a href="https://doi.org/10.1111/2041-210X.13897">the introductory
spOccupancy paper</a> that describes the package in more detail (Doser
et al. 2022). For a detailed description and tutorial of joint species
distribution models in <code>spOccupancy</code> that account for
residual species correlations, see
<code>vignette("factorModels")</code>,
<code>vignette("mcmcFactorModels")</code>, and our <a href="https://doi.org/10.1002/ecy.4137">open-access paper</a> (Doser et
al. 2023). For a description and tutorial of multi-season
(spatio-temporal) occupancy models in <code>spOccupancy</code>, see
<code>vignette("spaceTimeModels")</code>. For a tutorial on
spatially-varying coefficient models in <code>spOccupancy</code>, see
<code>vignette("svcModels")</code> and
<code>vignette(mcmcSVCModels)</code> and our associated papers that
describe the <a href="https://doserlab.com/files/pubs/doser2024JABES.pdf">methods</a>
(Doser et al. 2024A) and <a href="https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13814">applications
to ecology</a> (Doser et al. 2024B) in much more detail.</p>
<h2 id="references">References</h2>
<p>Doser, J. W., Finley, A. O., Kery, M., and Zipkin, E. F. (2022).
spOccupancy: An R package for single-species, multi-species, and
integrated spatial occupancy models. Methods in Ecology and Evolution.
13(8) 1670-1678. <a href="https://doi.org/10.1111/2041-210X.13897">https://doi.org/10.1111/2041-210X.13897</a>.</p>
<p>Doser, J. W., Finley, A. O., and Banerjee, S. (2023). Joint species
distribution models with imperfect detection for high-dimensional
spatial data. Ecology, 104(9), e4137. <a href="https://doi.org/10.1002/ecy.4137">https://doi.org/10.1002/ecy.4137</a>.</p>
<p>Doser, J. W., Finley, A. O., Saunders, S. P., Kéry, M., Weed, A. S.,
& Zipkin, E. F. (2024A). Modeling complex species-environment
relationships through spatially-varying coefficient occupancy models.
Journal of Agricultural, Biological and Environmental Statistics. <a href="https://doi.org/10.1007/s13253-023-00595-6">https://doi.org/10.1007/s13253-023-00595-6</a>.</p>
<p>Doser, J. W., Kéry, M., Saunders, S. P., Finley, A. O., Bateman, B.
L., Grand, J., Reault, S., Weed, A. S., & Zipkin, E. F. (2024B).
Guidelines for the use of spatially varying coefficients in species
distribution models. Global Ecology and Biogeography, 33, e13814. <a href="https://doi.org/10.1111/geb.13814">https://doi.org/10.1111/geb.13814</a></p>
</body>
</html>