https://leetcode-cn.com/problems/longest-palindromic-subsequence/
给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。
示例 1:
输入:
"bbbab"
输出:
4
一个可能的最长回文子序列为 "bbbb"。
示例 2:
输入:
"cbbd"
输出:
2
一个可能的最长回文子序列为 "bb"。
提示:
1 <= s.length <= 1000
s 只包含小写英文字母
- 动态规划
- 阿里
- 腾讯
- 百度
- 字节
这是一道最长回文的题目,要我们求出给定字符串的最大回文子序列。
解决这类问题的核心思想就是两个字“延伸”,具体来说
- 如果一个字符串是回文串,那么在它左右分别加上一个相同的字符,那么它一定还是一个回文串,因此
回文长度增加2
- 如果一个字符串不是回文串,或者在回文串左右分别加不同的字符,得到的一定不是回文串,因此
回文长度不变,我们取[i][j-1]和[i+1][j]的较大值
事实上,上面的分析已经建立了大问题和小问题之间的关联, 基于此,我们可以建立动态规划模型。
我们可以用 dp[i][j] 表示 s 中从 i 到 j(包括 i 和 j)的回文序列长度, 状态转移方程只是将上面的描述转化为代码即可:
if (s[i] === s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i][j - 1], dp[i + 1][j]);
}
base case 就是一个字符(轴对称点是本身)
- ”延伸“(extend)
代码支持:JS,Python3
JS Code:
/*
* @lc app=leetcode id=516 lang=javascript
*
* [516] Longest Palindromic Subsequence
*/
/**
* @param {string} s
* @return {number}
*/
var longestPalindromeSubseq = function (s) {
// bbbab 返回4
// tag : dp
const dp = [];
for (let i = s.length - 1; i >= 0; i--) {
dp[i] = Array(s.length).fill(0);
for (let j = i; j < s.length; j++) {
if (i - j === 0) dp[i][j] = 1;
else if (s[i] === s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i][j - 1], dp[i + 1][j]);
}
}
}
return dp[0][s.length - 1];
};
Python3 Code(记忆化递归):
class Solution:
def longestPalindromeSubseq(self, s: str) -> int:
@cache
def dp(l,r):
if l >= r: return int(l == r)
if s[l] == s[r]:
return 2 + dp(l+1,r-1)
return max(dp(l+1, r), dp(l, r-1))
return dp(0, len(s)-1)
Python3 Code(普通 dp)
class Solution:
def longestPalindromeSubseq(self, s: str) -> int:
n = len(s)
dp = [[0]*n for _ in range(n)]
for i in range(n-1, -1, -1):
for j in range(i, n):
if i == j:
dp[i][j] = 1
elif s[i] == s[j]:
dp[i][j] = dp[i+1][j-1]+2
else:
dp[i][j] = max(dp[i+1][j], dp[i][j-1])
return dp[0][-1]
复杂度分析
- 时间复杂度:枚举所有的状态需要 n^2 时间,状态转移需要常数的时间,因此总的时间复杂度为
$O(n^2)$ - 空间复杂度:我们使用二维 dp 存储所有状态,因此空间复杂度为
$O(n^2)$
大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 37K star 啦。 大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。