-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
average.rs
596 lines (525 loc) · 18.5 KB
/
average.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Defines physical expressions that can evaluated at runtime during query execution
use arrow::array::{AsArray, PrimitiveBuilder};
use log::debug;
use std::any::Any;
use std::convert::TryFrom;
use std::sync::Arc;
use crate::aggregate::groups_accumulator::accumulate::NullState;
use crate::aggregate::sum;
use crate::aggregate::sum::sum_batch;
use crate::aggregate::utils::calculate_result_decimal_for_avg;
use crate::aggregate::utils::down_cast_any_ref;
use crate::expressions::format_state_name;
use crate::{AggregateExpr, GroupsAccumulator, PhysicalExpr};
use arrow::compute;
use arrow::datatypes::{DataType, Decimal128Type, Float64Type, UInt64Type};
use arrow::{
array::{ArrayRef, UInt64Array},
datatypes::Field,
};
use arrow_array::{
Array, ArrowNativeTypeOp, ArrowNumericType, ArrowPrimitiveType, PrimitiveArray,
};
use datafusion_common::{downcast_value, ScalarValue};
use datafusion_common::{DataFusionError, Result};
use datafusion_expr::Accumulator;
use super::groups_accumulator::EmitTo;
use super::utils::{adjust_output_array, Decimal128Averager};
/// AVG aggregate expression
#[derive(Debug, Clone)]
pub struct Avg {
name: String,
expr: Arc<dyn PhysicalExpr>,
pub sum_data_type: DataType,
rt_data_type: DataType,
pub pre_cast_to_sum_type: bool,
}
impl Avg {
/// Create a new AVG aggregate function
pub fn new(
expr: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
sum_data_type: DataType,
) -> Self {
Self::new_with_pre_cast(expr, name, sum_data_type.clone(), sum_data_type, false)
}
pub fn new_with_pre_cast(
expr: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
sum_data_type: DataType,
rt_data_type: DataType,
cast_to_sum_type: bool,
) -> Self {
// the internal sum data type of avg just support FLOAT64 and Decimal data type.
assert!(matches!(
sum_data_type,
DataType::Float64 | DataType::Decimal128(_, _)
));
// the result of avg just support FLOAT64 and Decimal data type.
assert!(matches!(
rt_data_type,
DataType::Float64 | DataType::Decimal128(_, _)
));
Self {
name: name.into(),
expr,
sum_data_type,
rt_data_type,
pre_cast_to_sum_type: cast_to_sum_type,
}
}
}
impl AggregateExpr for Avg {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, self.rt_data_type.clone(), true))
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(AvgAccumulator::try_new(
// avg is f64 or decimal
&self.sum_data_type,
&self.rt_data_type,
)?))
}
fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
format_state_name(&self.name, "count"),
DataType::UInt64,
true,
),
Field::new(
format_state_name(&self.name, "sum"),
self.sum_data_type.clone(),
true,
),
])
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr.clone()]
}
fn name(&self) -> &str {
&self.name
}
fn reverse_expr(&self) -> Option<Arc<dyn AggregateExpr>> {
Some(Arc::new(self.clone()))
}
fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(AvgAccumulator::try_new(
&self.sum_data_type,
&self.rt_data_type,
)?))
}
fn groups_accumulator_supported(&self) -> bool {
use DataType::*;
matches!(&self.rt_data_type, Float64 | Decimal128(_, _))
}
fn create_groups_accumulator(&self) -> Result<Box<dyn GroupsAccumulator>> {
use DataType::*;
// instantiate specialized accumulator based for the type
match (&self.sum_data_type, &self.rt_data_type) {
(Float64, Float64) => {
Ok(Box::new(AvgGroupsAccumulator::<Float64Type, _>::new(
&self.sum_data_type,
&self.rt_data_type,
|sum: f64, count: u64| Ok(sum / count as f64),
)))
}
(
Decimal128(_sum_precision, sum_scale),
Decimal128(target_precision, target_scale),
) => {
let decimal_averager = Decimal128Averager::try_new(
*sum_scale,
*target_precision,
*target_scale,
)?;
let avg_fn =
move |sum: i128, count: u64| decimal_averager.avg(sum, count as i128);
Ok(Box::new(AvgGroupsAccumulator::<Decimal128Type, _>::new(
&self.sum_data_type,
&self.rt_data_type,
avg_fn,
)))
}
_ => Err(DataFusionError::NotImplemented(format!(
"AvgGroupsAccumulator for ({} --> {})",
self.sum_data_type, self.rt_data_type,
))),
}
}
}
impl PartialEq<dyn Any> for Avg {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.sum_data_type == x.sum_data_type
&& self.rt_data_type == x.rt_data_type
&& self.expr.eq(&x.expr)
})
.unwrap_or(false)
}
}
/// An accumulator to compute the average
#[derive(Debug)]
pub struct AvgAccumulator {
// sum is used for null
sum: ScalarValue,
sum_data_type: DataType,
return_data_type: DataType,
count: u64,
}
impl AvgAccumulator {
/// Creates a new `AvgAccumulator`
pub fn try_new(datatype: &DataType, return_data_type: &DataType) -> Result<Self> {
Ok(Self {
sum: ScalarValue::try_from(datatype)?,
sum_data_type: datatype.clone(),
return_data_type: return_data_type.clone(),
count: 0,
})
}
}
impl Accumulator for AvgAccumulator {
fn state(&self) -> Result<Vec<ScalarValue>> {
Ok(vec![ScalarValue::from(self.count), self.sum.clone()])
}
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values = &values[0];
self.count += (values.len() - values.null_count()) as u64;
self.sum = self
.sum
.add(&sum::sum_batch(values, &self.sum_data_type)?)?;
Ok(())
}
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values = &values[0];
self.count -= (values.len() - values.null_count()) as u64;
let delta = sum_batch(values, &self.sum.get_datatype())?;
self.sum = self.sum.sub(&delta)?;
Ok(())
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
let counts = downcast_value!(states[0], UInt64Array);
// counts are summed
self.count += compute::sum(counts).unwrap_or(0);
// sums are summed
self.sum = self
.sum
.add(&sum::sum_batch(&states[1], &self.sum_data_type)?)?;
Ok(())
}
fn evaluate(&self) -> Result<ScalarValue> {
match self.sum {
ScalarValue::Float64(e) => {
Ok(ScalarValue::Float64(e.map(|f| f / self.count as f64)))
}
ScalarValue::Decimal128(value, _, scale) => {
match value {
None => match &self.return_data_type {
DataType::Decimal128(p, s) => {
Ok(ScalarValue::Decimal128(None, *p, *s))
}
other => Err(DataFusionError::Internal(format!(
"Error returned data type in AvgAccumulator {other:?}"
))),
},
Some(value) => {
// now the sum_type and return type is not the same, need to convert the sum type to return type
calculate_result_decimal_for_avg(
value,
self.count as i128,
scale,
&self.return_data_type,
)
}
}
}
_ => Err(DataFusionError::Internal(
"Sum should be f64 or decimal128 on average".to_string(),
)),
}
}
fn supports_retract_batch(&self) -> bool {
true
}
fn size(&self) -> usize {
std::mem::size_of_val(self) - std::mem::size_of_val(&self.sum) + self.sum.size()
}
}
/// An accumulator to compute the average of `[PrimitiveArray<T>]`.
/// Stores values as native types, and does overflow checking
///
/// F: Function that calculates the average value from a sum of
/// T::Native and a total count
#[derive(Debug)]
struct AvgGroupsAccumulator<T, F>
where
T: ArrowNumericType + Send,
F: Fn(T::Native, u64) -> Result<T::Native> + Send,
{
/// The type of the internal sum
sum_data_type: DataType,
/// The type of the returned sum
return_data_type: DataType,
/// Count per group (use u64 to make UInt64Array)
counts: Vec<u64>,
/// Sums per group, stored as the native type
sums: Vec<T::Native>,
/// Track nulls in the input / filters
null_state: NullState,
/// Function that computes the final average (value / count)
avg_fn: F,
}
impl<T, F> AvgGroupsAccumulator<T, F>
where
T: ArrowNumericType + Send,
F: Fn(T::Native, u64) -> Result<T::Native> + Send,
{
pub fn new(sum_data_type: &DataType, return_data_type: &DataType, avg_fn: F) -> Self {
debug!(
"AvgGroupsAccumulator ({}, sum type: {sum_data_type:?}) --> {return_data_type:?}",
std::any::type_name::<T>()
);
Self {
return_data_type: return_data_type.clone(),
sum_data_type: sum_data_type.clone(),
counts: vec![],
sums: vec![],
null_state: NullState::new(),
avg_fn,
}
}
}
impl<T, F> GroupsAccumulator for AvgGroupsAccumulator<T, F>
where
T: ArrowNumericType + Send,
F: Fn(T::Native, u64) -> Result<T::Native> + Send,
{
fn update_batch(
&mut self,
values: &[ArrayRef],
group_indices: &[usize],
opt_filter: Option<&arrow_array::BooleanArray>,
total_num_groups: usize,
) -> Result<()> {
assert_eq!(values.len(), 1, "single argument to update_batch");
let values = values[0].as_primitive::<T>();
// increment counts, update sums
self.counts.resize(total_num_groups, 0);
self.sums.resize(total_num_groups, T::default_value());
self.null_state.accumulate(
group_indices,
values,
opt_filter,
total_num_groups,
|group_index, new_value| {
let sum = &mut self.sums[group_index];
*sum = sum.add_wrapping(new_value);
self.counts[group_index] += 1;
},
);
Ok(())
}
fn merge_batch(
&mut self,
values: &[ArrayRef],
group_indices: &[usize],
opt_filter: Option<&arrow_array::BooleanArray>,
total_num_groups: usize,
) -> Result<()> {
assert_eq!(values.len(), 2, "two arguments to merge_batch");
// first batch is counts, second is partial sums
let partial_counts = values[0].as_primitive::<UInt64Type>();
let partial_sums = values[1].as_primitive::<T>();
// update counts with partial counts
self.counts.resize(total_num_groups, 0);
self.null_state.accumulate(
group_indices,
partial_counts,
opt_filter,
total_num_groups,
|group_index, partial_count| {
self.counts[group_index] += partial_count;
},
);
// update sums
self.sums.resize(total_num_groups, T::default_value());
self.null_state.accumulate(
group_indices,
partial_sums,
opt_filter,
total_num_groups,
|group_index, new_value: <T as ArrowPrimitiveType>::Native| {
let sum = &mut self.sums[group_index];
*sum = sum.add_wrapping(new_value);
},
);
Ok(())
}
fn evaluate(&mut self, emit_to: EmitTo) -> Result<ArrayRef> {
let counts = emit_to.take_needed(&mut self.counts);
let sums = emit_to.take_needed(&mut self.sums);
let nulls = self.null_state.build(emit_to);
assert_eq!(nulls.len(), sums.len());
assert_eq!(counts.len(), sums.len());
// don't evaluate averages with null inputs to avoid errors on null values
let array: PrimitiveArray<T> = if nulls.null_count() > 0 {
let mut builder = PrimitiveBuilder::<T>::with_capacity(nulls.len());
let iter = sums.into_iter().zip(counts.into_iter()).zip(nulls.iter());
for ((sum, count), is_valid) in iter {
if is_valid {
builder.append_value((self.avg_fn)(sum, count)?)
} else {
builder.append_null();
}
}
builder.finish()
} else {
let averages: Vec<T::Native> = sums
.into_iter()
.zip(counts.into_iter())
.map(|(sum, count)| (self.avg_fn)(sum, count))
.collect::<Result<Vec<_>>>()?;
PrimitiveArray::new(averages.into(), Some(nulls)) // no copy
};
// fix up decimal precision and scale for decimals
let array = adjust_output_array(&self.return_data_type, Arc::new(array))?;
Ok(array)
}
// return arrays for sums and counts
fn state(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> {
let nulls = self.null_state.build(emit_to);
let nulls = Some(nulls);
let counts = emit_to.take_needed(&mut self.counts);
let counts = UInt64Array::new(counts.into(), nulls.clone()); // zero copy
let sums = emit_to.take_needed(&mut self.sums);
let sums = PrimitiveArray::<T>::new(sums.into(), nulls); // zero copy
let sums = adjust_output_array(&self.sum_data_type, Arc::new(sums))?;
Ok(vec![
Arc::new(counts) as ArrayRef,
Arc::new(sums) as ArrayRef,
])
}
fn size(&self) -> usize {
self.counts.capacity() * std::mem::size_of::<u64>()
+ self.sums.capacity() * std::mem::size_of::<T>()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::expressions::col;
use crate::expressions::tests::aggregate;
use crate::generic_test_op;
use arrow::record_batch::RecordBatch;
use arrow::{array::*, datatypes::*};
use datafusion_common::Result;
#[test]
fn avg_decimal() -> Result<()> {
// test agg
let array: ArrayRef = Arc::new(
(1..7)
.map(Some)
.collect::<Decimal128Array>()
.with_precision_and_scale(10, 0)?,
);
generic_test_op!(
array,
DataType::Decimal128(10, 0),
Avg,
ScalarValue::Decimal128(Some(35000), 14, 4)
)
}
#[test]
fn avg_decimal_with_nulls() -> Result<()> {
let array: ArrayRef = Arc::new(
(1..6)
.map(|i| if i == 2 { None } else { Some(i) })
.collect::<Decimal128Array>()
.with_precision_and_scale(10, 0)?,
);
generic_test_op!(
array,
DataType::Decimal128(10, 0),
Avg,
ScalarValue::Decimal128(Some(32500), 14, 4)
)
}
#[test]
fn avg_decimal_all_nulls() -> Result<()> {
// test agg
let array: ArrayRef = Arc::new(
std::iter::repeat::<Option<i128>>(None)
.take(6)
.collect::<Decimal128Array>()
.with_precision_and_scale(10, 0)?,
);
generic_test_op!(
array,
DataType::Decimal128(10, 0),
Avg,
ScalarValue::Decimal128(None, 14, 4)
)
}
#[test]
fn avg_i32() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![1, 2, 3, 4, 5]));
generic_test_op!(a, DataType::Int32, Avg, ScalarValue::from(3_f64))
}
#[test]
fn avg_i32_with_nulls() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![
Some(1),
None,
Some(3),
Some(4),
Some(5),
]));
generic_test_op!(a, DataType::Int32, Avg, ScalarValue::from(3.25f64))
}
#[test]
fn avg_i32_all_nulls() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![None, None]));
generic_test_op!(a, DataType::Int32, Avg, ScalarValue::Float64(None))
}
#[test]
fn avg_u32() -> Result<()> {
let a: ArrayRef =
Arc::new(UInt32Array::from(vec![1_u32, 2_u32, 3_u32, 4_u32, 5_u32]));
generic_test_op!(a, DataType::UInt32, Avg, ScalarValue::from(3.0f64))
}
#[test]
fn avg_f32() -> Result<()> {
let a: ArrayRef =
Arc::new(Float32Array::from(vec![1_f32, 2_f32, 3_f32, 4_f32, 5_f32]));
generic_test_op!(a, DataType::Float32, Avg, ScalarValue::from(3_f64))
}
#[test]
fn avg_f64() -> Result<()> {
let a: ArrayRef =
Arc::new(Float64Array::from(vec![1_f64, 2_f64, 3_f64, 4_f64, 5_f64]));
generic_test_op!(a, DataType::Float64, Avg, ScalarValue::from(3_f64))
}
}