forked from neurotrader888/TrendlineBreakoutMetaLabel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trendline_breakout.py
100 lines (70 loc) · 2.56 KB
/
trendline_breakout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
import pandas as pd
import pandas_ta as ta
import matplotlib.pyplot as plt
from trendline_automation import fit_trendlines_single
import mplfinance as mpf
def trendline_breakout(close: np.array, lookback:int):
s_tl = np.zeros(len(close))
s_tl[:] = np.nan
r_tl = np.zeros(len(close))
r_tl[:] = np.nan
sig = np.zeros(len(close))
for i in range(lookback, len(close)):
# NOTE window does NOT include the current candle
window = close[i - lookback: i]
s_coefs, r_coefs = fit_trendlines_single(window)
# Find current value of line, projected forward to current bar
s_val = s_coefs[1] + lookback * s_coefs[0]
r_val = r_coefs[1] + lookback * r_coefs[0]
s_tl[i] = s_val
r_tl[i] = r_val
if close[i] > r_val:
sig[i] = 1.0
elif close[i] < s_val:
sig[i] = -1.0
else:
sig[i] = sig[i - 1]
return s_tl, r_tl, sig
if __name__ == '__main__':
data = pd.read_csv('BTCUSDT3600.csv')
data['date'] = data['date'].astype('datetime64[s]')
data = data.set_index('date')
data = data.dropna()
lookback = 72
support, resist, signal = trendline_breakout(data['close'].to_numpy(), lookback)
data['support'] = support
data['resist'] = resist
data['signal'] = signal
plt.style.use('dark_background')
data['close'].plot(label='Close')
data['resist'].plot(label='Resistance', color='green')
data['support'].plot(label='Support', color='red')
plt.show()
data['r'] = np.log(data['close']).diff().shift(-1)
strat_r = data['signal'] * data['r']
pf = strat_r[strat_r > 0].sum() / strat_r[strat_r < 0].abs().sum()
print("Profit Factor", lookback, pf)
strat_r.cumsum().plot()
plt.ylabel("Cumulative Log Return")
plt.show()
'''
lookbacks = list(range(24, 169, 2))
pfs = []
lookback_returns = pd.DataFrame()
for lookback in lookbacks:
support, resist, signal = trendline_breakout(data['close'].to_numpy(), lookback)
data['signal'] = signal
data['r'] = np.log(data['close']).diff().shift(-1)
strat_r = data['signal'] * data['r']
pf = strat_r[strat_r > 0].sum() / strat_r[strat_r < 0].abs().sum()
print("Profit Factor", lookback, pf)
pfs.append(pf)
lookback_returns[lookback] = strat_r
plt.style.use('dark_background')
x = pd.Series(pfs, index=lookbacks)
x.plot()
plt.ylabel("Profit Factor")
plt.xlabel("Trendline Lookback")
plt.axhline(1.0, color='white')
'''