-
Notifications
You must be signed in to change notification settings - Fork 0
/
makeDatabase.py
110 lines (98 loc) · 4.65 KB
/
makeDatabase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
'''
This script reads DICOM files in a source directory or in a list of source directories
and searches for the patients in the given patients' list creates a DICOM DataBase
in the destination directory, copies the files,
and creates a DicomDataBase.csv file and a summary.txt file.
The structure will be:
destination --> Study_Instance_UID --> Series_Instance_UID --> DICOM_Files
@Date: 01 November 2021
@author: Amal Joseph Varghese
@email: [email protected]
@github: https://github.com/amaljova
'''
# =========================================Need Not Modify Block=======================================
import os
from pydicom import dcmread
import shutil
import pandas as pd
def makeFolders(dir_name):
'''To create a directory/directories if it/they are basent'''
if not os.path.exists(dir_name):
os.makedirs(dir_name)
def filterFiles(source, patients, study_dict):
'''
filterFiles(source = list of paths or a single path, patients = iterable patient ids,
study_dict = an empty dict passed by calling function)
It walks through all directories and reads all DICOM files,
makes the DataBase and information_CSV file we want
'''
for root, dirs, files in os.walk(source):
for file in files:
try:
f_name = os.path.join(root, file)
header = dcmread(f_name)
pat_id = header[(0x10, 0x20)].value # Patient ID
if pat_id in patients:
stu_inst_UID = header[(0x20, 0x0d)].value # Study Instance UID
ser_inst_UID = header[(0x20, 0x0e)].value # Series Instance UID
# -------------------data Copying---------------------------------
dest_dir = os.path.join(destination, stu_inst_UID)
dest_dir = os.path.join(dest_dir, ser_inst_UID)
makeFolders(dest_dir)
dest_file = os.path.join(dest_dir, file)
shutil.copy(f_name, dest_file)
# -------------------for data sheet (.csv)------------------------
modality = header[(0x08, 0x60)].value # Modality
if stu_inst_UID not in study_dict.keys():
study_dict[stu_inst_UID] = dict()
print(f"Created Empty dict for {stu_inst_UID}")
study_dict[stu_inst_UID]['StudyInstanceUID'] = stu_inst_UID
study_dict[stu_inst_UID]['Patient ID'] = pat_id
study_dict[stu_inst_UID][f'{modality.lower()}SeriesInstanceUID'] = ser_inst_UID
except:
pass
return study_dict
def makeDataBse(source='', destination='', outfile='DicomDataBase.csv', patients=[]):
'''
makeDataBse(source='path or list of paths', destination='path', patients=set(Patient_IDs))
It reads all DICOM files in the source and searches for the patients in the given patients' list,
creates a DICOM DataBase and a DicomDataBase.csv file in the destination directory.
'''
makeFolders(destination)
study_dict = dict()
if type(source) == str:
study_dict = filterFiles(source, patients, study_dict)
elif type(source) == list:
for path in source:
study_dict = filterFiles(path, patients, study_dict)
# --------------data frame----creating csv----------------
data_df = pd.DataFrame(study_dict.values())
data_df.to_csv(outfile, index=False)
print(f'Exported {outfile}')
# --------------create summary-----------------------------
missingPatients = patients ^ set(data_df['Patient ID'])
summary = '===================SUMMMARY===============================\n'
summary += f'Total Patients: {len(patients)}\n'
summary += f"Number of Available Patients: {len(set(data_df['Patient ID']))}\n"
summary += f'Number of Missing Patients: {len(missingPatients)}\n'
summary += f'Missing Patients: {missingPatients}\n'
summary += f"Available Patients: {set(data_df['Patient ID'])}\n"
with open('summary.txt', 'w') as f:
f.write(summary)
print('Created summary.txt')
#--------------console log missing patients-----------------
print(f'Missing patients: {missingPatients}')
# =========================================FIXME Block=======================================
source = '$path'
destination = '$path'
outfile = 'DicomDataBase.csv'
patients = set(pd.read_csv('data.csv')['Patient ID'])
# =========================================Need Not Modify====================================
if __name__ == '__main__':
makeDataBse(
source=source,
destination=destination,
outfile=outfile,
patients=patients
)
print('Done!')