Training a scikit-learn model (see example/sklearn)
-
Create serving Service (if not already running):
clearml-serving create --name "serving example"
(write down the service ID) -
Create model base two endpoints:
clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn_a" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --project "serving examples"
clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn_b" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --project "serving examples"
- Create pipeline model endpoint:
Threaded version
clearml-serving --id <service_id> model add --engine custom --endpoint "test_model_pipeline" --preprocess "examples/pipeline/preprocess.py"
AsyncIO version
clearml-serving --id <service_id> model add --engine custom_async --endpoint "test_model_pipeline" --preprocess "examples/pipeline/async_preprocess.py"
- If you already have the
clearml-serving
docker-compose running, it might take it a minute or two to sync with the new endpoint.
Or you can run the clearml-serving container independently docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID=<service_id> clearml-serving:latest
- Test new endpoint (do notice the first call will trigger the model pulling, so it might take longer, from here on, it's all in memory):
curl -X POST "http://127.0.0.1:8080/serve/test_model_pipeline" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2}'
Notice: You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc. by default new endpoints/models will be automatically updated after 1 minute