-
Notifications
You must be signed in to change notification settings - Fork 6
/
runtests.jl
269 lines (194 loc) · 6.31 KB
/
runtests.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
using Smolyak
using Test
# make a linear function to predict
global slopes = rand(4)
for basis_fun_type in [:chebyshev, :spread], mu_ in 1:4
@testset "testing interpolation on grid with mu=$mu_ with basis fun = $(basis_fun_type)" begin
println("1D")
truefun1(x) = 1.1 + x[1]^3
mu = [mu_]
xbnds = [[-2., rand()] for i in 1:length(mu)]
# Smolyak Components
sk = SmolyakKernel(mu, xbnds)
sg = SmolyakGrid(sk)
sb = SmolyakBasis(basis_fun_type, sk; NumDeriv=0)
sp = SmolyakPoly(sb; NumDeriv=0)
# Get true values of function at grid points
W = truefun1.(xgrid(sg))
# Generate corresponding Smolyak Basis Functions
BF = VVtoMatrix(BasisFunctions(xgrid(sg), sb));
# Solve for the coefficients
θ = BF\W
# Update the coefficients
coef!(θ, sp) # Update coefficient in Smolyak Polynomial
# Evaluate Smolayk poly on Smolyak Grid
What = value(xgrid(sg) , sp)
# Check maximum difference
@test maximum(abs, W-What) < 1e-12
println("2D")
truefun2(x) = 1.1 + (x[1]-x[2]^2)^2
mu = [mu_,mu_]
xbnds = [[-2., rand()] for i in 1:length(mu)]
# Smolyak Components
sk = SmolyakKernel(mu, xbnds)
sg = SmolyakGrid(sk)
sb = SmolyakBasis(basis_fun_type, sk; NumDeriv=0)
sp = SmolyakPoly(sb; NumDeriv=0)
# Get true values of function at grid points
W = truefun2.(xgrid(sg))
# Generate corresponding Smolyak Basis Functions
BF = VVtoMatrix(BasisFunctions(xgrid(sg), sb));
# Solve for the coefficients
θ = BF\W
# Update the coefficients
coef!(θ, sp) # Update coefficient in Smolyak Polynomial
# Evaluate Smolayk poly on Smolyak Grid
What = value(xgrid(sg) , sp)
# Check maximum difference
@test maximum(abs, W-What) <1e-12
println("3D")
truefun3(x) = 1.1 + (x[1]-x[2]^2)^2 + x[3]^2
mu = [mu_,mu_,mu_]
xbnds = [[-2., rand()] for i in 1:length(mu)]
# Smolyak Components
sk = SmolyakKernel(mu, xbnds)
sg = SmolyakGrid(sk)
sb = SmolyakBasis(basis_fun_type, sk; NumDeriv=0)
sp = SmolyakPoly(sb; NumDeriv=0)
# Get true values of function at grid points
W = truefun3.(xgrid(sg))
# Generate corresponding Smolyak Basis Functions
BF = VVtoMatrix(BasisFunctions(xgrid(sg), sb));
# Solve for the coefficients
θ = BF\W
# Update the coefficients
coef!(θ, sp) # Update coefficient in Smolyak Polynomial
# Evaluate Smolayk poly on Smolyak Grid
What = value(xgrid(sg) , sp)
# Check maximum difference
@test maximum(abs, W-What) <1e-12
println("4D")
truefun4(x) = 1.1 + (x[1]-x[2]^2)^2 + x[3]^2 - (x[3]+x[4])^2
mu = [mu_,mu_,mu_,mu_]
xbnds = [[-2., rand()] for i in 1:length(mu)]
# Smolyak Components
sk = SmolyakKernel(mu, xbnds)
sg = SmolyakGrid(sk)
sb = SmolyakBasis(basis_fun_type, sk; NumDeriv=0)
sp = SmolyakPoly(sb; NumDeriv=0)
# Get true values of function at grid points
W = truefun4.(xgrid(sg))
# Generate corresponding Smolyak Basis Functions
BF = VVtoMatrix(BasisFunctions(xgrid(sg), sb));
# Solve for the coefficients
θ = BF\W
# Update the coefficients
coef!(θ, sp) # Update coefficient in Smolyak Polynomial
# Evaluate Smolayk poly on Smolyak Grid
What = value(xgrid(sg) , sp)
# Check maximum difference
@test maximum(abs, W-What) <1e-12
end
end
for basis_fun_type in [:chebyshev, :spread], mu_ in 1:4
@testset "testing interpolation off grid with mu=$(mu_)" begin
# random point picker
rpoint(lb,ub) = (ub - lb)*rand() + lb
rpoint(bounds) = rpoint(bounds...)
println("one dimension")
function truefun1(x)
return 1.1 + slopes[1]*x[1]
end
mu = [mu_]
xbnds = [[-2., 12.] for i in 1:length(mu)]
# Smolyak Components
sk = SmolyakKernel(mu, xbnds)
sg = SmolyakGrid(sk)
sb = SmolyakBasis(basis_fun_type, sk; NumDeriv=0)
sp = SmolyakPoly(sb; NumDeriv=0)
# Get true values of function at grid points
W = truefun1.(xgrid(sg))
# Solve for the coefficients
BF = VVtoMatrix(BasisFunctions(xgrid(sg), sb));
θ = BF\W
# Update coefficient in Smolyak Polynomial
coef!(θ, sp)
# make basis on random point
NumObs = 10
xx = [rpoint.(xbnds) for n in 1:NumObs]
What = value(xx , sp)
@test isapprox(What, truefun1.(xx), atol=1e-6)
println("2D")
function truefun2(x)
return 1.1 + slopes[1]*x[1] - slopes[2]*x[2]
end
mu = [mu_,mu_]
xbnds = [[-2., 12.] for i in 1:length(mu)]
# Smolyak Components
sk = SmolyakKernel(mu, xbnds)
sg = SmolyakGrid(sk)
sb = SmolyakBasis(basis_fun_type, sk; NumDeriv=0)
sp = SmolyakPoly(sb; NumDeriv=0)
# Solve for the coefficients
BF = VVtoMatrix(BasisFunctions(xgrid(sg), sb));
θ = BF\truefun2.(xgrid(sg))
# Update coefficient in Smolyak Polynomial
coef!(θ, sp)
# make basis on random point
NumObs = 10
xx = [rpoint.(xbnds) for n in 1:NumObs]
What = value(xx , sp)
@test isapprox(What, truefun2.(xx), atol=1e-6)
println("3D")
function truefun3(x)
return 1.1 + slopes[1]*x[1] - slopes[2]*x[2] + slopes[3]*x[3]
end
mu = [mu_,mu_,mu_]
xbnds = [[-2., 12.] for i in 1:length(mu)]
# Smolyak Components
sk = SmolyakKernel(mu, xbnds)
sg = SmolyakGrid(sk)
sb = SmolyakBasis(basis_fun_type, sk; NumDeriv=0)
sp = SmolyakPoly(sb; NumDeriv=0)
# Solve for the coefficients
BF = VVtoMatrix(BasisFunctions(xgrid(sg), sb));
θ = BF\truefun3.(xgrid(sg))
# Update coefficient in Smolyak Polynomial
coef!(θ, sp)
# make basis on random point
NumObs = 10
xx = [rpoint.(xbnds) for n in 1:NumObs]
What = value(xx , sp)
@test isapprox(What, truefun3.(xx), atol=1e-6)
println("4D")
function truefun4(x)
return 1.1 + slopes[1]*x[1] - slopes[2]*x[2] + slopes[3]*x[3] * slopes[4] * x[4]
end
mu = [mu_,mu_,mu_,mu_]
xbnds = [[-2., 12.] for i in 1:length(mu)]
# Smolyak Components
sk = SmolyakKernel(mu, xbnds)
sg = SmolyakGrid(sk)
sb = SmolyakBasis(basis_fun_type, sk; NumDeriv=0)
sp = SmolyakPoly(sb; NumDeriv=0)
# Solve for the coefficients
BF = VVtoMatrix(BasisFunctions(xgrid(sg), sb));
θ = BF\truefun4.(xgrid(sg))
# Update coefficient in Smolyak Polynomial
coef!(θ, sp)
# make basis on random point
NumObs = 10
xx = [rpoint.(xbnds) for n in 1:NumObs]
What = value(xx , sp)
if mu_ == 1
println("approximation level mu=1 is too low in 4D with multiplicative component.")
for i in 1:NumObs
#@test !isapprox(What, truefun.(xx), atol=1e-6)
end
else
for i in 1:NumObs
@test isapprox(What, truefun4.(xx), atol=1e-6)
end
end
end
end