Skip to content

Latest commit

 

History

History
346 lines (268 loc) · 35 KB

README_min_max.md

File metadata and controls

346 lines (268 loc) · 35 KB

Summary of Benchmark Training

Note that these are the results for models within kgcnn implementation, and that training is not always done with optimal hyperparameter or splits, when comparing with literature. This table is generated automatically from keras history logs. Model weights and training statistics plots are not uploaded on github due to their file size.

Max. or Min. denotes the best test error observed for any epoch during training. To show overall best test error run python3 summary.py --min_max True. If not noted otherwise, we use a (fixed) random k-fold split for validation errors.

ClinToxDataset

ClinTox (MoleculeNet) consists of 1478 compounds as smiles and data of drugs approved by the FDA and those that have failed clinical trials for toxicity reasons. We use random 5-fold cross-validation. The first label 'approved' is chosen as target.

model kgcnn epochs Accuracy AUC(ROC) Max. Accuracy Max. AUC
DMPNN 4.0.0 50 0.9480 ± 0.0138 0.8297 ± 0.0568 0.9594 ± 0.0071 0.8928 ± 0.0301
GAT 4.0.0 50 0.9480 ± 0.0070 0.8512 ± 0.0468 0.9561 ± 0.0077 0.8740 ± 0.0436
GATv2 4.0.0 50 0.9372 ± 0.0155 0.8587 ± 0.0754 0.9581 ± 0.0102 0.8915 ± 0.0539
GCN 4.0.0 50 0.9432 ± 0.0155 0.8555 ± 0.0593 0.9574 ± 0.0082 0.8876 ± 0.0378
GIN 4.0.0 50 0.9412 ± 0.0034 0.8066 ± 0.0636 0.9567 ± 0.0102 0.8634 ± 0.0482
GraphSAGE 4.0.0 100 0.9412 ± 0.0073 0.8013 ± 0.0422 0.9547 ± 0.0076 0.8933 ± 0.0411
Schnet 4.0.0 50 0.9277 ± 0.0102 0.6562 ± 0.0760 0.9392 ± 0.0125 0.7721 ± 0.0510

CoraDataset

Cora Dataset of 19793 publications and 8710 sparse node attributes and 70 node classes. Here we use random 5-fold cross-validation on nodes.

model kgcnn epochs Categorical accuracy Max. Categorical accuracy
DMPNN 4.0.0 300 0.2476 ± 0.1706 0.2554 ± 0.1643
GAT 4.0.0 250 0.6157 ± 0.0071 0.6331 ± 0.0089
GATv2 4.0.0 1000 0.6211 ± 0.0048 0.6383 ± 0.0079
GCN 4.0.0 300 0.6232 ± 0.0054 0.6307 ± 0.0061
GIN 4.0.0 800 0.6263 ± 0.0080 0.6323 ± 0.0087
GraphSAGE 4.0.0 600 0.6151 ± 0.0053 0.6431 ± 0.0027

CoraLuDataset

Cora Dataset after Lu et al. (2003) of 2708 publications and 1433 sparse attributes and 7 node classes. Here we use random 5-fold cross-validation on nodes.

model kgcnn epochs Categorical accuracy Max. Categorical accuracy
DMPNN 4.0.0 300 0.8357 ± 0.0156 0.8545 ± 0.0181
GAT 4.0.0 250 0.8397 ± 0.0122 0.8512 ± 0.0147
GATv2 4.0.0 250 0.8331 ± 0.0104 0.8427 ± 0.0120
GCN 4.0.0 300 0.8072 ± 0.0109 0.8497 ± 0.0149
GIN 4.0.0 500 0.8279 ± 0.0170 0.8335 ± 0.0176
GraphSAGE 4.0.0 500 0.8497 ± 0.0100 0.8741 ± 0.0115

ESOLDataset

ESOL consists of 1128 compounds as smiles and their corresponding water solubility in log10(mol/L). We use random 5-fold cross-validation.

model kgcnn epochs MAE [log mol/L] RMSE [log mol/L] Min. MAE Min. RMSE
AttentiveFP 4.0.0 200 0.4351 ± 0.0110 0.6080 ± 0.0207 0.4023 ± 0.0185 0.5633 ± 0.0328
CMPNN 4.0.0 600 0.5276 ± 0.0154 0.7505 ± 0.0189 0.4681 ± 0.0107 0.6351 ± 0.0182
DGIN 4.0.0 300 0.4434 ± 0.0252 0.6225 ± 0.0420 0.4247 ± 0.0180 0.5980 ± 0.0277
DMPNN 4.0.0 300 0.4401 ± 0.0165 0.6203 ± 0.0292 0.4261 ± 0.0118 0.5968 ± 0.0211
EGNN 4.0.0 800 0.4507 ± 0.0152 0.6563 ± 0.0370 0.4209 ± 0.0129 0.5977 ± 0.0444
GAT 4.0.0 500 0.4818 ± 0.0240 0.6919 ± 0.0694 0.4550 ± 0.0230 0.6491 ± 0.0591
GATv2 4.0.0 500 0.4598 ± 0.0234 0.6650 ± 0.0409 0.4372 ± 0.0217 0.6217 ± 0.0450
GCN 4.0.0 800 0.4613 ± 0.0205 0.6534 ± 0.0513 0.4405 ± 0.0277 0.6197 ± 0.0602
GIN 4.0.0 300 0.5369 ± 0.0334 0.7954 ± 0.0861 0.4967 ± 0.0159 0.7332 ± 0.0647
GNNFilm 4.0.0 800 0.4854 ± 0.0368 0.6724 ± 0.0436 0.4669 ± 0.0317 0.6488 ± 0.0370
GraphSAGE 4.0.0 500 0.4874 ± 0.0228 0.6982 ± 0.0608 0.4774 ± 0.0239 0.6789 ± 0.0521
HamNet 4.0.0 400 0.5479 ± 0.0143 0.7417 ± 0.0298 0.5109 ± 0.0112 0.7008 ± 0.0241
HDNNP2nd 4.0.0 500 0.7857 ± 0.0986 1.0467 ± 0.1367 0.7620 ± 0.1024 1.0097 ± 0.1326
INorp 4.0.0 500 0.5055 ± 0.0436 0.7297 ± 0.0786 0.4791 ± 0.0348 0.6687 ± 0.0520
MAT 4.0.0 400 0.5064 ± 0.0299 0.7194 ± 0.0630 0.5035 ± 0.0288 0.7125 ± 0.0570
MEGAN 4.0.0 400 0.4281 ± 0.0201 0.6062 ± 0.0252 0.4161 ± 0.0139 0.5798 ± 0.0201
Megnet 4.0.0 800 0.5679 ± 0.0310 0.8196 ± 0.0480 0.5059 ± 0.0258 0.7003 ± 0.0454
MoGAT 4.0.0 200 0.4797 ± 0.0114 0.6533 ± 0.0114 0.4613 ± 0.0135 0.6247 ± 0.0161
MXMNet 4.0.0 900 0.6486 ± 0.0633 1.0123 ± 0.2059 0.6008 ± 0.0575 0.8923 ± 0.1685
NMPN 4.0.0 800 0.5046 ± 0.0266 0.7193 ± 0.0607 0.4823 ± 0.0226 0.6729 ± 0.0521
PAiNN 4.0.0 250 0.4857 ± 0.0598 0.6650 ± 0.0674 0.4206 ± 0.0157 0.5925 ± 0.0476
RGCN 4.0.0 800 0.4703 ± 0.0251 0.6529 ± 0.0318 0.4387 ± 0.0178 0.6048 ± 0.0240
rGIN 4.0.0 300 0.5196 ± 0.0351 0.7142 ± 0.0263 0.4956 ± 0.0292 0.6887 ± 0.0231
Schnet 4.0.0 800 0.4777 ± 0.0294 0.6977 ± 0.0538 0.4503 ± 0.0243 0.6416 ± 0.0434

FreeSolvDataset

FreeSolv (MoleculeNet) consists of 642 compounds as smiles and their corresponding hydration free energy for small neutral molecules in water. We use a random 5-fold cross-validation.

model kgcnn epochs MAE [log mol/L] RMSE [log mol/L] Min. MAE Min. RMSE
CMPNN 4.0.0 600 0.5202 ± 0.0504 0.9339 ± 0.1286 0.5016 ± 0.0551 0.8886 ± 0.1249
DGIN 4.0.0 300 0.5489 ± 0.0374 0.9448 ± 0.0787 0.5132 ± 0.0452 0.8704 ± 0.1177
DimeNetPP 4.0.0 872 0.6167 ± 0.0719 1.0302 ± 0.1717 0.5907 ± 0.0663 0.9580 ± 0.1503
DMPNN 4.0.0 300 0.5487 ± 0.0754 0.9206 ± 0.1889 0.4947 ± 0.0665 0.8362 ± 0.1812
EGNN 4.0.0 800 0.5386 ± 0.0548 1.0363 ± 0.1237 0.5268 ± 0.0607 0.9849 ± 0.1590
GAT 4.0.0 500 0.6051 ± 0.0861 1.0326 ± 0.1819 0.5790 ± 0.0880 0.9717 ± 0.2008
GATv2 4.0.0 500 0.6151 ± 0.0247 1.0535 ± 0.0817 0.5971 ± 0.0177 1.0037 ± 0.0753
GCN 4.0.0 800 0.6400 ± 0.0834 1.0876 ± 0.1393 0.5780 ± 0.0836 0.9438 ± 0.1597
GIN 4.0.0 300 0.8100 ± 0.1016 1.2695 ± 0.1192 0.6720 ± 0.0516 1.0699 ± 0.0662
GNNFilm 4.0.0 800 0.6562 ± 0.0552 1.1597 ± 0.1245 0.6358 ± 0.0606 1.1168 ± 0.1371
GraphSAGE 4.0.0 500 0.5894 ± 0.0675 1.0009 ± 0.1491 0.5700 ± 0.0615 0.9508 ± 0.1333
HamNet 4.0.0 400 0.6619 ± 0.0428 1.1410 ± 0.1120 0.6005 ± 0.0466 1.0120 ± 0.0800
HDNNP2nd 4.0.0 500 1.0201 ± 0.1559 1.6351 ± 0.3419 0.9933 ± 0.1523 1.5395 ± 0.2969
INorp 4.0.0 500 0.6612 ± 0.0188 1.1155 ± 0.1061 0.6391 ± 0.0154 1.0556 ± 0.1064
MAT 4.0.0 400 0.8115 ± 0.0649 1.3099 ± 0.1235 0.7915 ± 0.0687 1.2256 ± 0.1712
MEGAN 4.0.0 400 0.6303 ± 0.0550 1.0429 ± 0.1031 0.6141 ± 0.0540 1.0192 ± 0.1074
Megnet 4.0.0 800 0.8878 ± 0.0528 1.4134 ± 0.1200 0.8090 ± 0.0405 1.2735 ± 0.1157
MoGAT 4.0.0 200 0.7097 ± 0.0374 1.0911 ± 0.1334 0.6596 ± 0.0450 1.0424 ± 0.1313
MXMNet 4.0.0 900 1.1386 ± 0.1979 3.0487 ± 2.1757 1.0970 ± 0.1909 2.8598 ± 2.0855
RGCN 4.0.0 800 0.5128 ± 0.0810 0.9228 ± 0.1887 0.4956 ± 0.0864 0.8678 ± 0.2111
rGIN 4.0.0 300 0.8503 ± 0.0613 1.3285 ± 0.0976 0.8042 ± 0.0777 1.2469 ± 0.1013
Schnet 4.0.0 800 0.6070 ± 0.0285 1.0603 ± 0.0549 0.5688 ± 0.0314 0.9526 ± 0.0840

ISO17Dataset

The database consist of 129 molecules each containing 5,000 conformational geometries, energies and forces with a resolution of 1 femtosecond in the molecular dynamics trajectories. The molecules were randomly drawn from the largest set of isomers in the QM9 dataset.

model kgcnn epochs Energy (test_within) Force (test_within) Min. Energy (test_within) Min. Force (test_within)
Schnet.EnergyForceModel 4.0.0 1000 0.0061 ± nan 0.0134 ± nan 0.0057 ± nan 0.0134 ± nan

LipopDataset

Lipophilicity (MoleculeNet) consists of 4200 compounds as smiles. Graph labels for regression are octanol/water distribution coefficient (logD at pH 7.4). We use random 5-fold cross-validation.

model kgcnn epochs MAE [log mol/L] RMSE [log mol/L] Min. MAE Min. RMSE
DMPNN 4.0.0 300 0.3814 ± 0.0064 0.5462 ± 0.0095 0.3774 ± 0.0072 0.5421 ± 0.0093
GAT 4.0.0 500 0.5168 ± 0.0088 0.7220 ± 0.0098 0.4906 ± 0.0092 0.6819 ± 0.0079
GATv2 4.0.0 500 0.4342 ± 0.0104 0.6056 ± 0.0114 0.4163 ± 0.0089 0.5785 ± 0.0163
GCN 4.0.0 800 0.4960 ± 0.0107 0.6833 ± 0.0155 0.4729 ± 0.0126 0.6496 ± 0.0116
GIN 4.0.0 300 0.4745 ± 0.0101 0.6658 ± 0.0159 0.4703 ± 0.0089 0.6555 ± 0.0163
GraphSAGE 4.0.0 500 0.4333 ± 0.0217 0.6218 ± 0.0318 0.4296 ± 0.0175 0.6108 ± 0.0258
Schnet 4.0.0 800 0.5657 ± 0.0202 0.7485 ± 0.0245 0.5280 ± 0.0136 0.7024 ± 0.0210

MD17Dataset

Energies and forces for molecular dynamics trajectories of eight organic molecules. All geometries in A, energy labels in kcal/mol and force labels in kcal/mol/A. We use preset train-test split. Training on 1000 geometries, test on 500/1000 geometries. Errors are MAE for forces. Results are for the CCSD and CCSD(T) data in MD17.

model kgcnn epochs Aspirin Toluene Malonaldehyde Benzene Ethanol
PAiNN.EnergyForceModel 4.0.0 1000 0.8551 ± nan 0.2815 ± nan 0.7749 ± nan 0.0427 ± nan 0.5805 ± nan
Schnet.EnergyForceModel 4.0.0 1000 1.2173 ± nan 0.7395 ± nan 0.8444 ± nan 0.3353 ± nan 0.4832 ± nan

MD17RevisedDataset

Energies and forces for molecular dynamics trajectories. All geometries in A, energy labels in kcal/mol and force labels in kcal/mol/A. We use preset train-test split. Training on 1000 geometries, test on 500/1000 geometries. Errors are MAE for forces.

model kgcnn epochs Aspirin Toluene Malonaldehyde Benzene Ethanol
Schnet.EnergyForceModel 4.0.0 1000 1.0389 ± 0.0071 0.5482 ± 0.0105 0.6727 ± 0.0132 0.2525 ± 0.0091 0.4471 ± 0.0199

MatProjectDielectricDataset

Materials Project dataset from Matbench with 4764 crystal structures and their corresponding Refractive index (unitless). We use a random 5-fold cross-validation.

model kgcnn epochs MAE [no unit] RMSE [no unit] Min. MAE Min. RMSE
CGCNN.make_crystal_model 4.0.0 1000 0.3306 ± 0.0602 1.9736 ± 0.7324 0.3012 ± 0.0561 1.7712 ± 0.6468
DimeNetPP.make_crystal_model 4.0.0 780 0.3415 ± 0.0542 1.9637 ± 0.6323 0.3031 ± 0.0526 1.7761 ± 0.6535
Megnet.make_crystal_model 4.0.0 1000 0.3362 ± 0.0550 2.0156 ± 0.5872 0.3007 ± 0.0563 1.7416 ± 0.6413
NMPN.make_crystal_model 4.0.0 700 0.3289 ± 0.0489 1.8770 ± 0.6522 0.3037 ± 0.0485 1.7718 ± 0.6470
PAiNN.make_crystal_model 4.0.0 800 0.3539 ± 0.0433 1.8661 ± 0.5984 0.3063 ± 0.0481 1.7823 ± 0.6299
Schnet.make_crystal_model 4.0.0 800 0.3180 ± 0.0359 1.8509 ± 0.5854 0.2914 ± 0.0475 1.7244 ± 0.6188

MatProjectEFormDataset

Materials Project dataset from Matbench with 132752 crystal structures and their corresponding formation energy in [eV/atom]. We use a random 5-fold cross-validation.

model kgcnn epochs MAE [eV/atom] RMSE [eV/atom] Min. MAE Min. RMSE
CGCNN.make_crystal_model 4.0.0 1000 0.0298 ± 0.0002 0.0747 ± 0.0029 0.0298 ± 0.0002 0.0738 ± 0.0029
Schnet.make_crystal_model 4.0.0 800 0.0211 ± 0.0003 0.0510 ± 0.0024 0.0211 ± 0.0003 0.0505 ± 0.0023

MatProjectGapDataset

Materials Project dataset from Matbench with 106113 crystal structures and their band gap as calculated by PBE DFT from the Materials Project, in eV. We use a random 5-fold cross-validation.

model kgcnn epochs MAE [eV] RMSE [eV] Min. MAE Min. RMSE
CGCNN.make_crystal_model 4.0.0 1000 0.2039 ± 0.0050 0.4882 ± 0.0213 0.2039 ± 0.0050 0.4783 ± 0.0203
Schnet.make_crystal_model 4.0.0 800 1.2226 ± 1.0573 58.3713 ± 114.2957 0.2983 ± 0.0257 0.6192 ± 0.0409

MatProjectIsMetalDataset

Materials Project dataset from Matbench with 106113 crystal structures and their corresponding Metallicity determined with pymatgen. 1 if the compound is a metal, 0 if the compound is not a metal. We use a random 5-fold cross-validation.

model kgcnn epochs Accuracy AUC Max. Accuracy Max. AUC
CGCNN.make_crystal_model 4.0.0 100 0.8910 ± 0.0027 0.9406 ± 0.0024 0.8954 ± 0.0028 nan ± nan
Megnet.make_crystal_model 4.0.0 100 0.8966 ± 0.0033 0.9506 ± 0.0026 0.8995 ± 0.0027 nan ± nan
Schnet.make_crystal_model 4.0.0 80 0.8953 ± 0.0058 0.9506 ± 0.0053 0.9005 ± 0.0027 nan ± nan

MatProjectJdft2dDataset

Materials Project dataset from Matbench with 636 crystal structures and their corresponding Exfoliation energy (meV/atom). We use a random 5-fold cross-validation.

model kgcnn epochs MAE [meV/atom] RMSE [meV/atom] Min. MAE Min. RMSE
CGCNN.make_crystal_model 4.0.0 1000 57.6974 ± 18.0803 140.6167 ± 44.8418 46.6901 ± 13.5301 121.0725 ± 44.0067
DimeNetPP.make_crystal_model 4.0.0 780 50.2880 ± 11.4199 126.0600 ± 38.3769 46.1936 ± 11.8615 118.6555 ± 38.6340
Megnet.make_crystal_model 4.0.0 1000 51.1735 ± 9.1746 123.4178 ± 32.9582 45.2357 ± 10.1934 113.8528 ± 37.2491
NMPN.make_crystal_model 4.0.0 700 59.3986 ± 10.9272 139.5943 ± 32.1129 48.0720 ± 12.1130 120.6016 ± 39.6981
PAiNN.make_crystal_model 4.0.0 800 49.3889 ± 11.5376 121.7087 ± 30.0472 46.6649 ± 11.5589 117.9086 ± 32.8603
Schnet.make_crystal_model 4.0.0 800 45.2412 ± 11.6395 115.6890 ± 39.0929 41.4056 ± 10.7214 112.5666 ± 38.0183

MatProjectLogGVRHDataset

Materials Project dataset from Matbench with 10987 crystal structures and their corresponding Base 10 logarithm of the DFT Voigt-Reuss-Hill average shear moduli in GPa. We use a random 5-fold cross-validation.

model kgcnn epochs MAE [log(GPa)] RMSE [log(GPa)] Min. MAE Min. RMSE
CGCNN.make_crystal_model 4.0.0 1000 0.0874 ± 0.0022 0.1354 ± 0.0056 0.0870 ± 0.0018 0.1316 ± 0.0041
DimeNetPP.make_crystal_model 4.0.0 780 0.0839 ± 0.0027 0.1290 ± 0.0065 0.0809 ± 0.0024 0.1232 ± 0.0049
Megnet.make_crystal_model 4.0.0 1000 0.0885 ± 0.0017 0.1360 ± 0.0054 0.0883 ± 0.0016 0.1342 ± 0.0049
NMPN.make_crystal_model 4.0.0 700 0.0874 ± 0.0027 0.1324 ± 0.0045 0.0867 ± 0.0025 0.1310 ± 0.0040
PAiNN.make_crystal_model 4.0.0 800 0.0870 ± 0.0033 0.1332 ± 0.0103 0.0845 ± 0.0017 0.1254 ± 0.0046
Schnet.make_crystal_model 4.0.0 800 0.0836 ± 0.0021 0.1296 ± 0.0044 0.0828 ± 0.0020 0.1277 ± 0.0043

MatProjectLogKVRHDataset

Materials Project dataset from Matbench with 10987 crystal structures and their corresponding Base 10 logarithm of the DFT Voigt-Reuss-Hill average bulk moduli in GPa. We use a random 5-fold cross-validation.

model kgcnn epochs MAE [log(GPa)] RMSE [log(GPa)] Min. MAE Min. RMSE
CGCNN.make_crystal_model 4.0.0 1000 0.0672 ± 0.0012 0.1265 ± 0.0042 0.0646 ± 0.0007 0.1199 ± 0.0036
DimeNetPP.make_crystal_model 4.0.0 780 0.0604 ± 0.0023 0.1141 ± 0.0055 0.0588 ± 0.0019 0.1095 ± 0.0057
Megnet.make_crystal_model 4.0.0 1000 0.0686 ± 0.0016 0.1285 ± 0.0061 0.0675 ± 0.0013 0.1264 ± 0.0052
NMPN.make_crystal_model 4.0.0 700 0.0688 ± 0.0009 0.1262 ± 0.0031 0.0647 ± 0.0015 0.1189 ± 0.0042
PAiNN.make_crystal_model 4.0.0 800 0.0649 ± 0.0007 0.1170 ± 0.0048 0.0565 ± 0.0009 0.1080 ± 0.0045
Schnet.make_crystal_model 4.0.0 800 0.0635 ± 0.0016 0.1186 ± 0.0044 0.0629 ± 0.0013 0.1154 ± 0.0046

MatProjectPerovskitesDataset

Materials Project dataset from Matbench with 18928 crystal structures and their corresponding Heat of formation of the entire 5-atom perovskite cell in eV. We use a random 5-fold cross-validation.

model kgcnn epochs MAE [eV] RMSE [eV] Min. MAE Min. RMSE
CGCNN.make_crystal_model 4.0.0 1000 0.0425 ± 0.0011 0.0712 ± 0.0037 0.0422 ± 0.0015 0.0684 ± 0.0030
DimeNetPP.make_crystal_model 4.0.0 780 0.0447 ± 0.0016 0.0730 ± 0.0050 0.0415 ± 0.0015 0.0690 ± 0.0045
Megnet.make_crystal_model 4.0.0 1000 0.0388 ± 0.0017 0.0675 ± 0.0041 0.0388 ± 0.0017 0.0675 ± 0.0041
NMPN.make_crystal_model 4.0.0 700 0.0381 ± 0.0009 0.0652 ± 0.0029 0.0380 ± 0.0009 0.0649 ± 0.0029
PAiNN.make_crystal_model 4.0.0 800 0.0474 ± 0.0003 0.0762 ± 0.0017 0.0472 ± 0.0004 0.0759 ± 0.0017
Schnet.make_crystal_model 4.0.0 800 0.0381 ± 0.0005 0.0645 ± 0.0024 0.0380 ± 0.0005 0.0644 ± 0.0022

MatProjectPhononsDataset

Materials Project dataset from Matbench with 1,265 crystal structures and their corresponding vibration properties in [1/cm]. We use a random 5-fold cross-validation.

model kgcnn epochs MAE [eV/atom] RMSE [eV/atom] Min. MAE Min. RMSE
CGCNN.make_crystal_model 4.0.0 1000 42.6447 ± 4.5721 92.1627 ± 21.4345 41.3049 ± 3.8502 86.9412 ± 16.6723
DimeNetPP.make_crystal_model 4.0.0 780 39.8893 ± 3.1280 77.5776 ± 16.0908 36.1806 ± 2.1331 67.9898 ± 7.9298
Megnet.make_crystal_model 4.0.0 1000 30.6620 ± 2.9013 60.8733 ± 17.1448 28.9268 ± 3.0908 54.5838 ± 13.5562
NMPN.make_crystal_model 4.0.0 700 45.9344 ± 5.7908 95.4136 ± 35.5401 43.0340 ± 4.1057 79.5178 ± 28.0048
PAiNN.make_crystal_model 4.0.0 800 47.5408 ± 4.2815 86.6761 ± 11.9220 45.9714 ± 3.3346 79.7746 ± 8.6082
Schnet.make_crystal_model 4.0.0 800 43.0692 ± 3.6227 88.5151 ± 20.0244 41.8227 ± 3.4578 76.7519 ± 16.4611

MUTAGDataset

MUTAG dataset from TUDataset for classification with 188 graphs. We use random 5-fold cross-validation.

model kgcnn epochs Accuracy AUC(ROC) Max. Accuracy Max. AUC
DMPNN 4.0.0 300 0.8407 ± 0.0463 0.8567 ± 0.0511 0.9098 ± 0.0390 0.9564 ± 0.0243
GAT 4.0.0 500 0.8141 ± 0.1077 0.8671 ± 0.0923 0.8407 ± 0.0926 0.9402 ± 0.0542
GATv2 4.0.0 500 0.8193 ± 0.0945 0.8379 ± 0.1074 0.8248 ± 0.0976 0.9360 ± 0.0512
GCN 4.0.0 800 0.7716 ± 0.0531 0.7956 ± 0.0909 0.8673 ± 0.0573 0.9324 ± 0.0544
GIN 4.0.0 300 0.8091 ± 0.0781 0.8693 ± 0.0855 0.9100 ± 0.0587 0.9539 ± 0.0564
GraphSAGE 4.0.0 500 0.8357 ± 0.0798 0.8533 ± 0.0824 0.8886 ± 0.0710 0.8957 ± 0.0814

MutagenicityDataset

Mutagenicity dataset from TUDataset for classification with 4337 graphs. The dataset was cleaned for unconnected atoms. We use random 5-fold cross-validation.

model kgcnn epochs Accuracy AUC(ROC) Max. Accuracy Max. AUC
DMPNN 4.0.0 300 0.8266 ± 0.0059 0.8708 ± 0.0076 0.8423 ± 0.0073 0.8968 ± 0.0109
GAT 4.0.0 500 0.7989 ± 0.0114 0.8290 ± 0.0112 0.8119 ± 0.0049 0.8700 ± 0.0077
GATv2 4.0.0 200 0.7674 ± 0.0048 0.8423 ± 0.0064 0.7743 ± 0.0079 0.8426 ± 0.0062
GCN 4.0.0 800 0.7955 ± 0.0154 0.8191 ± 0.0137 0.8130 ± 0.0090 0.8670 ± 0.0068
GIN 4.0.0 300 0.8118 ± 0.0091 0.8492 ± 0.0077 0.8248 ± 0.0089 0.8798 ± 0.0026
GraphSAGE 4.0.0 500 0.8195 ± 0.0126 0.8515 ± 0.0083 0.8294 ± 0.0123 0.8851 ± 0.0061

PROTEINSDataset

TUDataset of proteins that are classified as enzymes or non-enzymes. Nodes represent the amino acids of the protein. We use random 5-fold cross-validation.

model kgcnn epochs Accuracy AUC(ROC) Max. Accuracy Max. AUC
DMPNN 4.0.0 300 0.7287 ± 0.0253 0.7970 ± 0.0343 0.7790 ± 0.0190 0.8298 ± 0.0329
GAT 4.0.0 500 0.7314 ± 0.0357 0.7899 ± 0.0468 0.7763 ± 0.0380 0.8269 ± 0.0367
GATv2 4.0.0 500 0.6720 ± 0.0595 0.6850 ± 0.0938 0.7898 ± 0.0272 0.8273 ± 0.0304
GCN 4.0.0 800 0.7017 ± 0.0303 0.7211 ± 0.0254 0.7790 ± 0.0301 0.8342 ± 0.0358
GIN 4.0.0 150 0.7224 ± 0.0343 0.7905 ± 0.0528 0.7700 ± 0.0299 0.8096 ± 0.0409
GraphSAGE 4.0.0 500 0.7009 ± 0.0398 0.7263 ± 0.0453 0.7691 ± 0.0369 0.7991 ± 0.0353

QM7Dataset

QM7 dataset is a subset of GDB-13. Molecules of up to 23 atoms (including 7 heavy atoms C, N, O, and S), totalling 7165 molecules. We use dataset-specific 5-fold cross-validation. The atomization energies are given in kcal/mol and are ranging from -800 to -2000 kcal/mol).

model kgcnn epochs MAE [kcal/mol] RMSE [kcal/mol] Min. MAE Min. RMSE
DimeNetPP 4.0.0 872 3.4639 ± 0.2003 7.5327 ± 1.8190 3.4575 ± 0.1917 7.4462 ± 1.7268
EGNN 4.0.0 800 1.7300 ± 0.1336 5.1268 ± 2.5134 1.7022 ± 0.1210 5.0965 ± 2.4826
Megnet 4.0.0 800 1.5180 ± 0.0802 3.0321 ± 0.1936 1.5148 ± 0.0805 2.9391 ± 0.1885
MXMNet 4.0.0 900 1.2431 ± 0.0820 2.6694 ± 0.2584 1.1588 ± 0.0840 2.6014 ± 0.2272
NMPN 4.0.0 500 7.2907 ± 0.9061 38.1446 ± 12.1445 7.2489 ± 0.8699 35.4767 ± 10.2318
PAiNN 4.0.0 872 1.5765 ± 0.0742 5.2705 ± 2.2848 1.5428 ± 0.0675 5.1099 ± 2.0842
Schnet 4.0.0 800 3.4313 ± 0.4757 10.8978 ± 7.3863 3.3606 ± 0.4927 9.8169 ± 6.3053

QM9Dataset

QM9 dataset of 134k stable small organic molecules made up of C,H,O,N,F. Labels include geometric, energetic, electronic, and thermodynamic properties. We use a random 5-fold cross-validation, but not all splits are evaluated for cheaper evaluation. Test errors are MAE and for energies are given in [eV].

model kgcnn epochs HOMO [eV] LUMO [eV] U0 [eV] H [eV] G [eV]
Megnet 4.0.0 800 nan ± nan 0.0407 ± 0.0009 nan ± nan nan ± nan 0.0169 ± 0.0006
PAiNN 4.0.0 872 0.0483 ± 0.0275 0.0268 ± 0.0002 0.0099 ± 0.0003 0.0101 ± 0.0003 0.0110 ± 0.0002
Schnet 4.0.0 800 0.0402 ± 0.0007 0.0340 ± 0.0001 0.0142 ± 0.0002 0.0146 ± 0.0002 0.0143 ± 0.0002

SIDERDataset

SIDER (MoleculeNet) consists of 1427 compounds as smiles and data for adverse drug reactions (ADR), grouped into 27 system organ classes. We use random 5-fold cross-validation.

model kgcnn epochs Accuracy AUC(ROC) Max. Accuracy Max. AUC
DMPNN 4.0.0 50 0.7519 ± 0.0055 0.6280 ± 0.0173 0.7629 ± 0.0041 0.6336 ± 0.0167
GAT 4.0.0 50 0.7595 ± 0.0034 0.6224 ± 0.0106 0.7616 ± 0.0015 0.6231 ± 0.0101
GATv2 4.0.0 50 0.7548 ± 0.0052 0.6152 ± 0.0154 0.7602 ± 0.0036 0.6201 ± 0.0169
GIN 4.0.0 50 0.7472 ± 0.0055 0.5995 ± 0.0058 0.7565 ± 0.0032 0.6106 ± 0.0085
GraphSAGE 4.0.0 30 0.7547 ± 0.0043 0.6038 ± 0.0108 0.7597 ± 0.0021 0.6109 ± 0.0107
Schnet 4.0.0 50 0.7583 ± 0.0076 0.6119 ± 0.0159 0.7623 ± 0.0072 0.6191 ± 0.0105

Tox21MolNetDataset

Tox21 (MoleculeNet) consists of 7831 compounds as smiles and 12 different targets relevant to drug toxicity. We use random 5-fold cross-validation.

model kgcnn epochs Accuracy AUC(ROC) BACC Max. BACC Max. Accuracy Max. AUC
DMPNN 4.0.0 50 0.9272 ± 0.0024 0.8321 ± 0.0103 0.6995 ± 0.0130 0.7123 ± 0.0142 0.9292 ± 0.0016 0.8417 ± 0.0075
GAT 4.0.0 50 0.9243 ± 0.0022 0.8279 ± 0.0092 0.6504 ± 0.0074 0.6528 ± 0.0071 0.9246 ± 0.0021 0.8293 ± 0.0093
GATv2 4.0.0 50 0.9222 ± 0.0019 0.8251 ± 0.0069 0.6760 ± 0.0140 0.6782 ± 0.0156 0.9246 ± 0.0025 0.8314 ± 0.0116
GIN 4.0.0 50 0.9220 ± 0.0024 0.7986 ± 0.0180 0.6741 ± 0.0143 0.6882 ± 0.0151 0.9259 ± 0.0022 0.8248 ± 0.0130
GraphSAGE 4.0.0 100 0.9180 ± 0.0027 0.7976 ± 0.0087 0.6755 ± 0.0047 0.7083 ± 0.0114 0.9252 ± 0.0015 0.8225 ± 0.0142
Schnet 4.0.0 50 0.9128 ± 0.0030 0.7719 ± 0.0139 0.6639 ± 0.0162 0.6820 ± 0.0115 0.9215 ± 0.0027 0.7980 ± 0.0079