forked from docker/genai-stack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloader.py
173 lines (149 loc) · 6.58 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import requests
from dotenv import load_dotenv
from langchain_community.graphs import Neo4jGraph
import streamlit as st
from streamlit.logger import get_logger
from chains import load_embedding_model
from utils import create_constraints, create_vector_index
from PIL import Image
import logging
load_dotenv(".env")
url = os.getenv("NEO4J_URI")
username = os.getenv("NEO4J_USERNAME")
password = os.getenv("NEO4J_PASSWORD")
ollama_base_url = os.getenv("OLLAMA_BASE_URL")
embedding_model_name = os.getenv("EMBEDDING_MODEL")
# Remapping for Langchain Neo4j integration
os.environ["NEO4J_URL"] = url
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
so_api_base_url = "https://api.stackexchange.com/2.3/search/advanced"
embeddings, dimension = load_embedding_model(
embedding_model_name, config={"ollama_base_url": ollama_base_url}, logger=logger
)
# if Neo4j is local, you can go to http://localhost:7474/ to browse the database
neo4j_graph = Neo4jGraph(
url=url, username=username, password=password, refresh_schema=False
)
create_constraints(neo4j_graph)
create_vector_index(neo4j_graph)
def load_so_data(tag: str = "neo4j", page: int = 1) -> None:
parameters = (
f"?pagesize=100&page={page}&order=desc&sort=creation&answers=1&tagged={tag}"
"&site=stackoverflow&filter=!*236eb_eL9rai)MOSNZ-6D3Q6ZKb0buI*IVotWaTb"
)
try:
data = requests.get(so_api_base_url + parameters).json()
insert_so_data(data)
except requests.RequestException as e:
logger.error(f"Error loading StackOverflow data: {e}")
st.error(f"Error loading StackOverflow data: {e}")
except Exception as e:
logger.error(f"Unexpected error: {e}")
st.error(f"Unexpected error: {e}")
def load_high_score_so_data() -> None:
parameters = (
f"?fromdate=1664150400&order=desc&sort=votes&site=stackoverflow&"
"filter=!.DK56VBPooplF.)bWW5iOX32Fh1lcCkw1b_Y6Zkb7YD8.ZMhrR5.FRRsR6Z1uK8*Z5wPaONvyII"
)
try:
data = requests.get(so_api_base_url + parameters).json()
insert_so_data(data)
except requests.RequestException as e:
logger.error(f"Error loading high score StackOverflow data: {e}")
st.error(f"Error loading high score StackOverflow data: {e}")
except Exception as e:
logger.error(f"Unexpected error: {e}")
st.error(f"Unexpected error: {e}")
def insert_so_data(data: dict) -> None:
# Calculate embedding values for questions and answers
for q in data["items"]:
question_text = q["title"] + "\n" + q["body_markdown"]
q["embedding"] = embeddings.embed_query(question_text)
for a in q["answers"]:
a["embedding"] = embeddings.embed_query(
question_text + "\n" + a["body_markdown"]
)
# Cypher, the query language of Neo4j, is used to import the data
# https://neo4j.com/docs/getting-started/cypher-intro/
# https://neo4j.com/docs/cypher-cheat-sheet/5/auradb-enterprise/
import_query = """
UNWIND $data AS q
MERGE (question:Question {id:q.question_id})
ON CREATE SET question.title = q.title, question.link = q.link, question.score = q.score,
question.favorite_count = q.favorite_count, question.creation_date = datetime({epochSeconds: q.creation_date}),
question.body = q.body_markdown, question.embedding = q.embedding
FOREACH (tagName IN q.tags |
MERGE (tag:Tag {name:tagName})
MERGE (question)-[:TAGGED]->(tag)
)
FOREACH (a IN q.answers |
MERGE (question)<-[:ANSWERS]-(answer:Answer {id:a.answer_id})
SET answer.is_accepted = a.is_accepted,
answer.score = a.score,
answer.creation_date = datetime({epochSeconds:a.creation_date}),
answer.body = a.body_markdown,
answer.embedding = a.embedding
MERGE (answerer:User {id:coalesce(a.owner.user_id, "deleted")})
ON CREATE SET answerer.display_name = a.owner.display_name,
answerer.reputation= a.owner.reputation
MERGE (answer)<-[:PROVIDED]-(answerer)
)
WITH * WHERE NOT q.owner.user_id IS NULL
MERGE (owner:User {id:q.owner.user_id})
ON CREATE SET owner.display_name = q.owner.display_name,
owner.reputation = q.owner.reputation
MERGE (owner)-[:ASKED]->(question)
"""
try:
neo4j_graph.query(import_query, {"data": data["items"]})
except Exception as e:
logger.error(f"Error inserting StackOverflow data into Neo4j: {e}")
st.error(f"Error inserting StackOverflow data into Neo4j: {e}")
# Streamlit
def get_tag() -> str:
input_text = st.text_input(
"Which tag questions do you want to import?", value="neo4j"
)
return input_text
def get_pages():
col1, col2 = st.columns(2)
with col1:
num_pages = st.number_input(
"Number of pages (100 questions per page)", step=1, min_value=1
)
with col2:
start_page = st.number_input("Start page", step=1, min_value=1)
st.caption("Only questions with answers will be imported.")
return (int(num_pages), int(start_page))
def render_page():
datamodel_image = Image.open("./images/datamodel.png")
st.header("StackOverflow Loader")
st.subheader("Choose StackOverflow tags to load into Neo4j")
st.caption("Go to http://localhost:7474/ to explore the graph.")
user_input = get_tag()
num_pages, start_page = get_pages()
if st.button("Import", type="primary"):
with st.spinner("Loading... This might take a minute or two."):
try:
for page in range(1, num_pages + 1):
load_so_data(user_input, start_page + (page - 1))
st.success("Import successful", icon="✅")
st.caption("Data model")
st.image(datamodel_image)
st.caption("Go to http://localhost:7474/ to interact with the database")
except Exception as e:
logger.error(f"Error during import: {e}")
st.error(f"Error during import: {e}", icon="🚨")
with st.expander("Highly ranked questions rather than tags?"):
if st.button("Import highly ranked questions"):
with st.spinner("Loading... This might take a minute or two."):
try:
load_high_score_so_data()
st.success("Import successful", icon="✅")
except Exception as e:
logger.error(f"Error during import of highly ranked questions: {e}")
st.error(f"Error during import of highly ranked questions: {e}", icon="🚨")
render_page()