
Crowdsourcingreal-estate
Openmarket for real-estate finance

K.C. AsmoredjoA. HovanesyanS.M. ToC.M.Wong Loi Sing

Crowdsourcing
real-estate

Open market for real-estate finance
by

K.C. Asmoredjo
A. Hovanesyan

S.M. To
C. M. Wong Loi Sing

to obtain the degree of Bachelor of Science
at the Delft University of Technology,

to be defended publicly on Tuesday January 31, 2017.

Student numbers: 4091760, 4322711, 4064976, 4076699
Project duration: November 14, 2016 – January 31, 2017

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

When taking out a mortgage from a Dutch financial institution, the financial institution will usually provide
a fraction of the property value. How much that fraction is depends on the Loan-to-Value ratio. When taking
out a mortgage, it is expected that the person that is in need of a mortgage to provide a downpayment for
the remaining value. This means that people that need a mortgage will have to save up before they can buy a
house. As saving up could be an obstacle if the downpayment gets too big, crowdfunding the remaining value
could be a solution.

Such crowdfunding platforms already exist. In fact, they are increasing in popularity. There are a variety of
crowdfunding platforms for different needs, such as for entrepreneurs seeking investments for their projects.
However, there is one thing all these platforms have in common and that is that there is always a central point
of trust, resulting in unneeded costs for the users of the platform.

This thesis presents the development process of researching and implementing a decentral market where
mortgages can be crowdfunded. We have created a system that does not have a central point of trust, but it
does connect people that need funding with investors and financial institutions.

An earlier bachelor project has already implemented a decentral marketplace to trade digital currencies.
At first, the idea was to re-use their implementation. However, after the research phase we came to the con-
clusion that their implementation was no use to our mortgage market, as their marketplace is specifically
designed for trading digital currencies. Therefore we made our own. To ensure more trust into our market,
we used a blockchain to save the agreements that are made between the users. The blockchain ensures that
the agreements made cannot be changed. Therefore, when an agreement is added to the blockchain the
agreement is final.

Our final product is a working decentral mortgage market, which enables people that need funding to
place loan requests, receive mortgage offers and investment offers from financial institutions and investors.
Financial institutions are able to receive loan requests and provide mortgages. Investors are able to search for
investment opportunities, view campaigns that need funding and place investment bids on those campaigns.
This is all possible without the risk of the mortgage market platform from getting shut down. The mortgage
market can be run using a terminal or using the graphical user interface, making it accessible for all types of
users.

i

Preface

This thesis describes the development process of researching and designing a decentral market for real-estate
finance. This project has been initiated as part of the course TI3806 Bachelor Project in the Computer Science
program at the Delft University of Technology. The project took place from early November 2016 until the end
of January 2017.

There are several people we would like to thank for their support during the project. First we would like
to thank our coach, dr. ir. Johan Pouwelse, for his valuable guidance and feedback. We would also like to
thank our clients from ABN AMRO. Finally, we would like to thank Bart Gout and Leonard Franken (AFM)
for supporting us with their knowledge about mortgages, and Martijn de Vos for answering questions and
helping us overcome challenges we had during the development phase of the project.

K.C. Asmoredjo
A. Hovanesyan

S.M. To
C. M. Wong Loi Sing
Delft, January 2017

ii

Contents

1 Introduction 1
2 Problem description 2

2.1 Problem definition . 2
2.2 Client description . 2
2.3 Required technologies . 3

2.3.1 Dispersy . 3
2.3.2 Blockchain . 3

2.4 Project requirements . 3
2.4.1 Must Have . 3
2.4.2 Should Have . 4
2.4.3 Could Have . 4
2.4.4 Won’t Have . 4

2.5 Screens & Workflow . 5
2.6 Related initiatives . 5

2.6.1 Jungo . 5
2.6.2 Blandlord . 6
2.6.3 Greencrowd . 6
2.6.4 Fundrise . 6
2.6.5 RealtyShares . 7
2.6.6 Collin Crowdfund . 7
2.6.7 Upstart. 7
2.6.8 CrowdAboutNow. 8
2.6.9 Kapitaal op Maat . 8
2.6.10 Geldvoorelkaar. 8
2.6.11 Bouwsteen . 9
2.6.12 Gradefix . 9
2.6.13 MoneYou. 9

2.7 Development process . 9

3 The customer journey 10
3.1 Researching the customer journey . 10
3.2 Defining the customer journey . 10

3.2.1 The borrower’s journey . 10
3.2.2 The investor’s journey . 11
3.2.3 The financial institution’s journey . 11

3.3 Object-oriented analysis and design . 11
3.4 Defining the API . 12
3.5 Database structure . 13
3.6 Visualising the core functionalities . 13

4 Let’s get connected 15
4.1 Visualising the market . 15
4.2 Information flow design. 15
4.3 Integrating Dispersy . 17

4.3.1 Dispersy and Market Identity . 17
4.3.2 Dispersy message sharing . 17

4.4 Communication protocol specification . 18
4.4.1 Dispersy Messages . 18
4.4.2 Market API Messages. 19

iii

Contents iv

4.5 Document Sharing . 20
4.6 Blockchain . 20

4.6.1 Architecture . 20
4.6.2 Signed messages and the blockchain. 21
4.6.3 Blockchain storage model . 22

5 Quality assurance 23
5.1 Unit testing . 23
5.2 Integration testing . 23
5.3 Code quality SIG . 25

6 Conclusion and evaluation 26
6.1 Fulfillment of requirements . 26

6.1.1 Must Have . 26
6.1.2 Should Have . 27
6.1.3 Could Have . 27
6.1.4 Won’t Have . 27

6.2 Challenges . 28
6.3 Known issues and future work . 28
6.4 Conclusion . 28

Bibliography 30
Appendices 32
A Project description: Openmarket for real-estate crowdsourcing 33
B Infosheet 37
C Mortgage Process 39
D Customer journeys 45
E Market API 48
F GUI Screens 57
G SIG feedback 67

1
Introduction

The mortgage market is a multibillion market that has seen some serious lows in the last couple of years. The
high amount of borrowers defaulting their mortgage played a big role in the 2007-2008 financial crisis [43].
That financial crisis had a big influence on the world economy.

Taking a mortgage from Dutch financial institutions can be done as follows. First, the borrower needs
to decide what the possibilities are, e.g. what are the total costs and how big can the loan be? When the
financial situation of the borrower has been verified, a house can be chosen that fits the borrower’s needs.
When an agreement has been met with the seller of the house, a mortgage can be settled with a mortgage
lender. Together with the provider it will be possible to choose for a mortgage type that fits the borrower’s
financial situation.

In the Netherlands, the current maximum mortgage limit is 102%. Each year it is being lowered with 1%
till 2018, when the maximum mortgage limit will be 100% [19]. The CEO of the Dutch National Bank [12],
Klaas Knot, wishes to see the maximum mortgage limit be reduced to 90% by 2028 [40]. While the maximum
amount of the mortgage is a legal limit, financial institutions will usually only provide a fraction of the prop-
erty value amount. How much the financial institutions will provide exactly depends on the Loan-to-Value
ratio [24], which differs case to case. Instead it is expected that the borrower provides a downpayment of the
remaining value. The large downpayment means that people that are looking to buy a house will have to save
up before they can buy a house.

To enable buyers to get the capital they need but do not have, crowdfunding is a solution. Such crowd-
funding platforms already exist and they are becoming more popular. Some give the opportunity to crowd-
fund mortgages while others are more general and provide a place for entrepreneurs to find investments for
their projects. These projects range from opening a new shop to projects like installation of personal solar
panels. What these platforms all have in common is that they are centralized, which means that there is a
third party that connects the investors with the investees. The crowdfunding services they provide are not for
free, which results in unneeded costs for the users of the platform. A way to eliminate the unneeded costs is
to make a decentralized platform, where no middleman is needed.

1

2
Problem description

In this chapter we define the problem, give a description of the client, and analyze related initiatives. Further
it contains the project requirements and the description of the screens we have designed.

2.1. Problem definition
It is currently very difficult for an average citizen to get a mortgage. Only borrowers with minimal risk of
defaulting are given a mortgage. As the value of houses keep rising, it becomes increasingly difficult for people
to receive a mortgage. Additionally, because of the mortgages not covering the total cost of the estate, the only
possibility is to make a large down payment. For a lot of people, and especially for young adults that recently
joined the working force, down payment is not an option. At the same time, interest on saving accounts is so
low that it does not covers inflation. Investing could bring a solution to savings losing value over time.

There is a need for a system that connects these parties together. The parties consist of the borrower, the
investor and the financial institution. These three stakeholders all have their own incentive to work with each
other. The borrower needs a bank to settle a mortgage and investors to fund the initial down payment. In
return the public investors and the bank can receive interest on their respective investments. To solve the
mentioned problems, we focus on creating a platform where mortgages can be partially crowdfunded.

Crowdfunding platforms are getting increasingly popular to create funds for projects in which banks are
not investing. Platforms on which it is possible to get your mortgage crowdfunded already exist, yet on all
of these platforms there is a central party that connects the investors with the borrowers. The central party
is not only unneeded, but also brings unnecessary costs and risks. Bringing down the middleman will also
bring down the whole system.

To avoid that the whole system collapses when one of the key parties drops out, the system needs to be
decentralized. During the project, we will strive to create a platform where people can find mortgages that are
funded by both banks and investors. A person will be able to apply for a mortgage where the bank can fund
a fraction of the loan (e.g. 70% of the total loan). When the mortgage has been accepted the loan request will
be transferred to an open market place where investors can crowdfund the remaining part of the mortgage.
The interest rate on these investments will be negotiated between the borrower and the investor.

The aim of this project is to create a decentralized market where it is possible to crowdfund a mortgage.
The system will not be controlled by a single party, but mostly by supply and demand.

When we started the project, the problem description differed. The original project description can be
found in appendix A.

2.2. Client description
The client for this project is ABN AMRO [1]. ABN AMRO is collaborating with the TU Delft Blockchain Lab [3],
which is part of the Tribler team [48], on the development of blockchain [4] applications. They aim to create
some complex blockchain applications that are suitable for use in practice, within half a year [25]. With the
collaboration, ABN AMRO wants to improve their knowledge on blockchain technology, especially on the
practical application of distributed digital ledgers.

TU Delft has been researching blockchain since 2007. The research at TU Delft focuses on developing
next-generation blockchain technology that is trustworthy and scalable. Their scalable blockchain is based

2

2.3. Required technologies 3

on tamper-proof secure timelines and graph-based data structure. This project will be built on previous work
that has been done at the Blockchain Lab [49]. All of their work is shared with the open source community.

2.3. Required technologies
Being a decentral application, there can be no central server. All communication must be shared between
actors in the system, with no central point of trust of authority. This can be achieved by creating a peer-to-
peer network for the decentral real-estate market application. Originally the assignment was to extend the
existing decentral market[26] to include crowdfunded mortgages. This market community was built upon the
Distributed Permission System (Dispersy) [11] for peer-to-peer networking. That means that building upon
Dispersy is part of our assignment.

Furthermore, this being a project for ABN AMRO in collaboration with the TU Delft Blockchain Lab for
development of blockchain applications, it is expected that the market utilize blockchain technology in some
way.

2.3.1. Dispersy
Dispersy is a fully decentralized platform designed to simplify the creation of distributed communities. It uses
elliptic curve cryptography [23] in their simple identity and messaging system to securely and anonymously
identify different nodes. It can run on systems consisting of a large number of nodes, without having the need
for any server infrastructure. Each node is equally important and they run the same algorithm to perform
the same tasks, which increases the robustness of the system. Data is forwarded between nodes and will
eventually reach all nodes.

2.3.2. Blockchain
A blockchain is a distributed database that holds a steadily growing list of data called blocks. Each block
contains, among other things, a timestamp and a link to the previous block. Within the system, data is being
exchanged and authentication between the nodes takes place. The data can not be manipulated or falsified,
due to the distributed system. Using a blockchain it is not necessary that a third party ensures the reliability
of a transaction.

2.4. Project requirements
To prioritize the requirements, we used the MoSCoW method [29]. The requirements are subject to change
during the development phase.

2.4.1. Must Have
The Must Have provides the Minimum Usable SubseT (MUST) of requirements that the project guarantees
to deliver. These are the core functionalities and without these, the product cannot be delivered. These
requirements have the highest priority.

• Borrower can place loan requests.

• Borrower can upload documents needed to apply for a mortgage.

• Borrower can see offers they get from investors and financial institutions.

• Borrower can accept offers they get from investors and financial institutions.

• Investor can see which campaigns are available.

• Investor can place an offer on a campaign.

• Financial institution can create a quote for a mortgage.

• Financial institution can see their pending loan requests.

• Financial institution can review pending loan requests.

• Financial institution can accept pending loan requests.

2.4. Project requirements 4

• Python 2 to be able to interface with Tribler and Dispersy.

• PyQt for the GUI.

• Tests and coverage.

• Full transparency. Everything open-source.

2.4.2. Should Have
The Should Have requirements are important but not vital. The product is still viable without these function-
alities. It has the highest priority after the Must Have requirements.

• Borrower can reject offers they get from investors and financial institutions.

• Investor can see which campaign they have currently invested in.

• Financial institution can see which mortgages they currently have provided.

• Financial institution can reject pending loan requests.

• Scalable.

• Blockchain technology.

2.4.3. Could Have
The Could Have requirements are wanted or desirable, but less important than the Should Have require-
ments.

• Borrower can see which campaigns are available.

• Investor can resell their investment.

• Investor can invest passively.

• Financial institution can see which campaigns are available.

• Financial institution can determine the maximum interest rate that a borrower is allowed to pay an
investor for the loan.

• Financial institution can recommend an interest rate that the borrower can pay to an investor for the
loan.

• Secure storage and transfer of information.

• Encrypt and decrypt user documents.

2.4.4. Won’t Have
The Won’t Have requirements will not be implemented in the final solution, because they are out of scope for
this project.

• Borrower can see how much has already been paid off.

• Investor can see how much has already been paid off.

• Financial institution can see how much has already been paid off.

• Regulator can see the total financial health of all the active loans.

• Transactions can be done through the system.

• Smart contracts to ensure binding agreements between stakeholders.

• The system can do a risk assessment.

2.5. Screens & Workflow 5

Smart contracts are out of scope for this project and will be researched and implemented by a PhD stu-
dent, after we have finished this project. Besides smart contracts, transactions through the system are out of
scope for this project too. Transactions can not be done through the system. Therefore borrowers, investors,
and financial institutions will not be able to see how much has already been paid off. There will not be a
regulator as our market is a decentralized market. We have decided that the system will not be able to do a
risk assessment, as this would be too complex and will not be achievable in the duration of this project.

2.5. Screens & Workflow
Based on the requirements, a list of pages the program should have to achieve these goals has been compiled.
The screen can be either for borrowers (B), investors (I) or financial institutions (F).

Profile (BI)
The profile screen differs depending on the role of the person that is logged in. It is used to save and
update personal information. Investors only need to enter their name, email address and IBAN. Bor-
rowers need to enter more personal information and they can upload personal documents such as
payslips and proof of identity.

Portfolio (BIF)
The portfolio screen differs depending on the role of the person that is logged in. Borrowers can see,
accept and reject the offers they got from banks and investors. Investors can see the loans they invested
in, their pending investments. Financial institutions can see which mortgages they currently have.

Place Loan Request (B)
Borrowers can place a loan request, which will then be sent to all financial institutions of their choice.
This will include information on the house, its price, and how much money they want to borrow. There
will also be a box to write a small description, so an investor can learn more about who they are invest-
ing in.

Pending Loan Request (F)
Financial institutions can see all pending loan requests. They can review each of the requests and ac-
cept or reject them. When they accept a loan request, they have to enter the details about the mortgage
here, such as interest and duration.

Open Market (BIF)
On the open market all investing opportunities are presented to all roles, but investment can only be
made by investors. Key things to show are the property address, the amount needed, the interest, the
duration of the mortgage, and the remaining time of the campaign. Search and filter functions will be
included as well.

Campaign Bids (BIF)
The Campaign Bids screen can be reached from the open market by selecting a campaign, and shows
the current bids that investors have made in the campaign. Additionally, from here it is possible for
investors to place a bid of their own by entering the amount they want to invest, the duration of the
loan and the desired interest rate.

2.6. Related initiatives
To get some more insight into the current crowdfunding market, it is necessary to analyze initiatives related
to crowdfunding, crowdfunded mortgages and crowdfunded loans. We found a couple of these initiatives of
which thirteen will be discussed in this section.

2.6.1. Jungo
Jungo [21] is a mortgage bank, with the ability to crowdfund your mortgage. All clients whom are accepted by
the bank will guaranteed get a mortgage. But Jungo differs from normal mortgage banks by making it possible
for 3rd parties and institutional investors to provide a part of the mortgage in return for an attractive interest.

At the moment of this writing it is not yet clear what the application process is for a mortgage via Jungo as
they have not yet launched their service. All borrowers will undergo a risk assessment based on the Code of
Conduct for Mortgage Loans [7].

2.6. Related initiatives 6

Investors can choose which project they want to finance, for an amount between €250 and €80.000. The
provisional interest is between 3% and 3.5%. They pay the money via an iDEAL transfer to the person request-
ing funding, and will be paid back monthly for up to 8 years. The length of the investment varies per Jungo
campaign.

However, only 20% of the mortgage sum can be crowdfunded. The remaining amount must be provided
by Jungo itself. As this seemed as a constraint set by law, we reached out to a Leonard Franken (supervisor In-
novationHub) from The Dutch Authority for the Financial Markets (AFM) [46] to get some insight. According
to him the limit to the amount that can be crowdfunded seems to be set by Jungo itself, as no limit has been
set by law. He then mentions that this could have been done to make it more attractive to investors. From
the investor’s perspective 30 years is a long time to lend out their money. The shorter the duration, the harder
it becomes for the borrower to pay back the debt. By making a smaller sum that needs to be paid back in a
shorter period of time, the deal becomes more attractive for both parties.

Investors are protected from borrowers who are not able to live up to their obligation by a fund controlled
by Jungo to continue paying investors when a borrower misses a payment. This fund is limited however.

Thus Jungo can be seen as a mortgage bank that also functions as intermediary for individuals and in-
stitutional investors who wish to invest in a mortgage. Finally they also provide a guarantee (up to a certain
point) that your investment will be returned.

2.6.2. Blandlord
Blandlord [2] is a platform for crowd ownership of homes. The idea behind the platform is that home owners
can put their house for sale via Blandlord, even if the home is inhabited (the new landlord of the renters will
become Blandlord). These houses can then be bought by a number of investors who can buy a percentage
of the house. The rent income is then shared among investors depending on the percentage that they own.
Thus Blandlord is not only a platform for selling the houses, it also functions as a letting agent.

All homes must be 100% owned by the owner before being placed on Blandlord. To minimize the risk
that the homes stay empty due to lack of renters, only houses in areas with a healthy house market are ac-
cepted, as judged by Blandlord. Furthermore, an extensive audit of the condition of the house is required as
a prerequisite of being able to list the house on Blandlord, to prevent the investors being faced by unforeseen
costs.

Investors can buy shares in a house, with the minimum investment amount being €100. The value of the
shares are directly correlated to the value of the house. They are paid their share of the rent on a monthly
basis, based on the expected rental income. The costs of using the service is a 1% transaction fee on all
transactions (buying/selling shares).

2.6.3. Greencrowd
The focus of Greencrowd [18] is to provide a crowdfunding platform for sustainable energy projects such as
installation of solar panels, wind power, et cetera. These projects will in turn provide income by selling the
power or service, or for instance lower the energy costs of a building that has installed solar panels.

Organisations can present a plan for a sustainable energy project, which will then be analyzed by Green-
crowd to make sure the plan is realistic. They will also analyze the financial risks and assign a grade to each
project, ranging from A to G. The interest an investor can expect is tied to the grade. The riskier the project,
the higher the return. A project has a certain amount of time to get financed, if the finance goal is not reached
before the deadline, all investors will be returned their money.

Investors can invest in all running projects, with the amount varying per project. The running time of
the loan also varies per project. The only constant is that the interest is always tied to the grade the project
received. Payments also vary per project, which can be monthly or quarterly, and they can include special
provisions for paying off a loan earlier (the investor then receives a bonus from the investee).

2.6.4. Fundrise
Fundrise [14] is an online platform where individuals, accredited or non-accredited, are able to directly invest
in commercial real estate projects from real estate companies, without the middleman. The main difference
between the Fundrise eREITs (electronic Real Estate Investment Trust) and other REITs, is that Fundrise is
more transparent and has roughly 90% lower fees. Fundrise enables investors to choose in which eREIT they
want to put capital in.

To submit a project for a loan, the companies need to indicate the amount to raise and the project type,
and they have to upload relevant documents needed for the application. First the information will be screened

2.6. Related initiatives 7

to ensure investment is consistent with Fundrise standards. Then follows the in-depth analysis, which in-
cludes an on-site visit by a member of the Fundrise team. When the project is accepted, it will receive a
Fundrise rating, a letter rating ranging from A to E so that investors can easily compare different investments.

The minimum investment is $1.000 and the maximum may not exceed 10% of the investor’s gross annual
income or net worth. The fund transfer is done via bank account. When investors get their return is specific
to each listing. When available, a distribution schedule can be found in the offering documents for that
investment. Generally investors can expect to receive distributions quarterly. Asset management fees are
between 1% and 1.5%.

In the event that a company is not able to pay back the loan, the eREIT will bear the risk. The eREIT will
pay the investors to the extent of any deficiency between the value of the collateral and the amount of the
loan.

2.6.5. RealtyShares
RealtyShares [39] is a real estate crowdfunding platform that lets accredited investors choose what they invest
in. Investors have the choice to invest in one specific property or in a group of properties. RealtyShares offers
commercial and residential real estate projects.

To apply for financing, relevant information and documents should be provided by the borrower. Real-
tyShares then reviews whether the borrower prequalify based on their track record, financial strength and
expertise. After the pre qualification, borrowers will be thoroughly reviewed based on their investment strat-
egy, financials, legal standing, and property condition/location.

Investors can start investing from $5.000. The funds transfer is via bank account. Depending on the type
of investment, investors get their return either quarterly or monthly. Investor fees have a maximum of 2% of
the invested amount. RealtyShares offers investors to loan their money supported by a collateral, a specific
real estate property or pool of properties.

2.6.6. Collin Crowdfund
Collin Crowdfund [8] offers linear loans through crowdfunding to established businesses and startups. Inno-
vatively Collin returns to the basics of banking, where the investor decides what they invest in. Collin also
cooperates with banks to demonstrate what is realistic and to give the business the opportunity they deserve.
That combination ensures that the investor makes a good return at a reasonable risk and that the business
can realize their ambitions.

To apply for a loan the business has to indicate the desired loan amount and the purpose for the loan, and
they have to upload relevant attachments for their loan application. Collin then provides the business with a
Crowdfund Coach to assist with filling out the Collin Credit Score model, which is a risk assessment that tests
the company in terms of solvency, profitability and liquidity. The Collin Credit Score produces a D&B rating
[10] and the boundaries of the interest rate the business is allowed to set. Collin either approves or rejects the
loan application using all of that information.

Investors can choose which projects they want to finance. Private investors can invest for an amount
between €500 and €80.000 and corporate investors can invest from €500 with no upper bound. They pay the
investment via an iDEAL transfer to the business requesting funding and will be paid back monthly for the
duration of the project, which can be anywhere between 6 months and 10 years.

To protect investors from businesses that are not able to live up to their obligation, Collin continues pay-
ing investors for one month. When the business is not able to pay the investors back after that month, there
will be no payment of interest to investors.

Collin asks for a small fee from both the business and the investors, which makes it possible for Collin to
take care of the payments for both sides. For every investment a management fee is calculated annually at
a rate of 0.85%. The business is asked for a one-time fee of 1.9% for a successful loan and a monthly fee of
0.05%.

2.6.7. Upstart
Upstart [51] is a platform that allows people to obtain loans with a fixed rate. Upstart does not only look at
credit scores, because they believe people are more than just credit scores. They use a model that considers
the school the borrower has attended, their field of study, their academic performance, and employment
history in addition to their credit history. That allows Upstart to offer people the loans they have earned.

To apply for a loan at Upstart, borrowers have to fill in an online application which will include informa-
tion about their academic credentials, work experience and what they plan on doing with the loan proceeds.

2.6. Related initiatives 8

Upstart also verifies the borrower’s personal and credit information as part of the application process.
Investors cannot choose in which project they invest, because loans are not visible publicly on Upstart.

Investors can invest for a minimum investment amount of $100. All loans are fixed-rate loans with a 36 or
60-month repayment period. Investors will get an investor account on Upstart, to which they can transfer
money to invest or to transfer their returns to their own bank account.

Upstart determines the interest rate using the borrower’s education, credentials, work experience, and
credit history. This means that the interest rates are different for each loan. Once the interest is determined,
all loans have a fixed-rate interest. The loans are unsecured obligations of the borrower and are not supported
by any collateral.

As compensation for the marketing and ongoing servicing of loans, Upstart receives servicing fees that
are paid from the origination fees that are collected from borrowers. Borrowers pay a one time origination
fee that is between 1% and 6% of the target loan amount. Investors pay an annual servicing fee of 0.5%.

2.6.8. CrowdAboutNow
CrowdAboutNow [9] is a crowdfunding platform that makes it possible for entrepreneurs to start a crowd-
funding campaign. They will support the entrepreneurs whenever they need it. CrowdAboutNow makes it
possible to invest safely, both legally and technically.

To apply for a loan, entrepreneurs have to take a test to determine if their plans are suitable for crowd-
funding. If their plan is suitable, an account manager will get in touch with the entrepreneur to discuss their
plans.

Investors can choose the projects they want to invest in themselves. Investors can invest for an amount
up to €80.000. They pay the investment via an iDEAL transfer, for which a fee between €0.70 and €0.80 is
asked. It is not clear in what period of time and at what interest rate the investors will get their investments
back.

To minimize the risk for investors CrowdAboutNow verifies if the entrepreneur is willing to use its own net-
work to invest its venture capital. CrowdAboutNow verifies the identity of the entrepreneur, the registration
of the company, and its bank account. They also meet with the entrepreneur in person. If the entrepreneur
has been registered for less than 3 years at the Chamber of Commerce [6], a partner that understands the
industry will act as the nominating party. Should there not be enough investors to reach the loan target, all
investors will get their money back.

CrowdAboutNow advertise entrepreneurs’ crowdfunding campaigns, they give legal advice, and take care
of the financial transactions. They do this for a one-time entry fee of 1% of the loan target and a 2% annual
fee when the campaign is successfully funded.

2.6.9. Kapitaal op Maat
Kapitaal op Maat (KoM) [22] is a platform that makes it possible for different projects to get crowdfunded.
Possible project funding sum can range from €25.000 to €500.000. Individual users can invest any amount
between €100 and €50.000. Corporate investors do not have a hard ceiling, but both types of investors cannot
invest beyond the amount that is needed to get the project fully funded.

To apply for a loan the company or entrepreneur needs to present the website with a business plan of the
venture. After that a fee of €395 is paid to KoM to examine the presented offer and determine the risk of the
venture. Additionally, if the venture is accepted, another fee of €350 must be paid to publish the venture on
the website. The borrower will receive guidance with the right presentation of the offer. The calculated risk
of the venture, which consists of a grade from A+ to C-, determines the interest. This will range from 5.5% for
the lowest risk ventures (A+) and 9.5% for the highest risk ventures (C-).

When an investment is made, an initial fee of 0.9% of the investment is paid. All the investments are sent
to the escrow account of KoM and stored until the the funding goal is reached. If this goal is reached, a fee
of 4% must be paid by the borrower to receive the funding. When the fees are paid and the transactions are
made, the borrower will continue to pay the escrow a fixed rate every month until the investment and interest
are completely paid off. After that, the escrow distributes the amount accordingly among the investors.

2.6.10. Geldvoorelkaar
Geldvoorelkaar [15] is a crowdfunding platform where Dutch corporations and individuals can invest in na-
tional, small to middle sized ventures.

The platform provides different types of loans which consist of: Fixed-rate, Interest-only and Convertible
debt loans. The duration of the loan can range from 6 to 120 months. This can be as little as €1.000. There is

2.7. Development process 9

no limit to how much an entrepreneur can ask, but no funding will be received until the loan goal is reached.
The fees for a funding request are €125 for private investors and between €350 and €500 for corporate

investors. Additionally, when the loan goal is reached, the borrower pays a small fraction of the loan goal as
success fee each year for the duration of the loan. This fee can range from 0.5% to 7.9% of the loan goal.

Geldvoorelkaar does background checks on everyone asking for a loan. Before a request can be made, the
borrower has to present a business plan and a financial report. This is used to determine risk of the venture,
which in turn will be used to determine interest of the loan. The higher the risk, the higher the interest. This
is usually somewhere between 4% and 10% interest. After the transactions are made, the investors receive
monthly payments by the borrower until the loan and interest are completely paid off.

2.6.11. Bouwsteen
Bouwsteen [5] is a new initiative that is going to be available in Q1 of 2017. They want to provide a solution
targeted at groups that are not served adequately in the market yet, namely starters (employees and self-
employed) and seniors. Their goal is to create a financing product for the private housing market that allows
for a reduction in the monthly payments, providing flexibility to the homeowner. Since Bouwsteen have not
launched their service yet, it is not clear in what way the mortgages they will offer will work and how they are
planning on reducing the monthly payments.

2.6.12. Gradefix
Gradefix [17] is a new initiative by ABN AMRO to automate credit checks. It is completely different than the
previous initiatives described in this section as it has nothing to do with crowdfunding, but credit checks are
an integral part of any mortgage application. Gradefix calculates this score on the basis of the requester’s
bank transactions. By calculating the incoming and outgoing sums, and how much money is left at the end
of each month, a credit rating is generated.

2.6.13. MoneYou
MoneYou [28] is a bank that gives borrowers a lot of freedom with their mortgage. Unlike other banks, Mon-
eYou does not give any advice in any form. It is up to the applier to decide what is best for them and their
situation. The applier decides the specifics of the mortgages such as mortgage type, loan duration and loan
amount.

What makes MoneYou special compared to other banks is that they facilitate the mortgage and all of the
steps to get a mortgage online. In other words, it is possible for people to apply for a mortgage and go through
most of the steps online. Before an application can be made the applier needs to do a quiz on the MoneYou
website. The quiz consists of multiple choice questions that should show that the applier knows what they
are doing and has the financial knowledge and assets to take out the mortgage. The quiz and other submitted
documents such as payslips and other financial documents are used by MoneYou to make a final verdict on
giving out the mortgage or not. After the mortgage has been set, the definitive purchasing of the real-estate
can be made with the help of a notary.

2.7. Development process
During the project we used the Scrum framework [41]. We worked in sprints of 2 weeks, and we focused on
finishing a new functionality every sprint. Each chapter of this thesis reflects one sprint.

We held daily meetings within our group, we held meetings with our coach every week to discuss our
process and progress, and we had a couple of meetings with our client to discuss our progress. The meetings
made sure that we were able to stick to the goals of the client and to incorporate feedback that they provided.
We developed the software using GitHub [16] for revision control. During the the development of our software
we made use of Travis CI [47] and Jenkins [20] for continuous integration. Our project code can be found
at https://github.com/Jumba/decentralized-mortgage-market. Besides running the unittests on CI,
we also elected to use Xenon [52], a monitoring tool based on Radon [38] which measures code complexity. It
gives each function a grade based on their complexity, which ranges from A to F. Xenon has been configured
to fail as soon as a function with complexity C or worse has been detected.

We were also required to send our code two times during the course of the project to the Software Im-
provement Group (SIG) [42]. We received a score and some feedback from them, and processed their feed-
back. How we addressed the feedback can be found in section 5.3. Their full feedback can be found in ap-
pendix G.

https://github.com/Jumba/decentralized-mortgage-market

3
The customer journey

After centering our first two-week sprint around the orientation of the problem, we started working towards
a demo for our client. We have also designed the system, defined an API and started working on creating the
core functionalities in the graphical user interface (GUI).

The problem has three equally important stakeholders, as the system can not be functional with any of
these stakeholders not present. These stakeholders are the borrowers, investors and financial institutions. In
the following sections, the journey of each of the stakeholders will be discussed.

3.1. Researching the customer journey
Throughout the first sprint of the project, we concentrated on understanding the problem and related ini-
tiatives. Through analyzing the different initiatives, we came to understand more about crowdfunding real-
estate.

Because our problem concerns people who need a mortgage, we had to understand how mortgages work
too. The two most common mortgages are Linear and Fixed-Rate [30], which are available for starters. Bart
Gout, our real-estate/mortgage expert, provided us a document that listed the required documents needed
for applying a mortgage and a scheme showing the process of getting a mortgage. These documents can be
found in appendix C.

From the related initiatives, which were described in section 2.6, we found out that there are existing
crowdfunding platforms for real-estate. There is even a bank that facilitates the mortgage and regulates all
the steps to get a mortgage entirely online [28]. A MoneYou representative explained that the required identity
check can be delayed until the end when the borrower meets with the notary. Only the definitive purchase
will have to be made with a notary. Thus the marketplace does not need to supply a way to verify the identity
of a borrower.

3.2. Defining the customer journey
With the required information for the application process of a mortgage in mind, and thinking about what
the financial institutions need in order to offer a mortgage, and considering what the possible options are for
potential investors, we started defining the customer journeys. A flowchart of the journeys of all customers
can be found in appendix D.

3.2.1. The borrower’s journey
The borrower’s journey starts when the person opens the market software. The first page the person sees, is
the profile page. On this profile page they can add or append all required personal information. The first time
they fill in the profile they choose their role, which can be either borrower or investor. In this section the cho-
sen role will be borrower. Once the required fields are filled in and all the needed documents are uploaded, a
prospective borrower can go on to apply for a mortgage. If they have already applied for a mortgage, they can
check to see if any offers have been received from banks or investors in their portfolio.

Applying for a mortgage is a fairly straightforward process, as all required documents will have been up-
loaded to the profile. The user will have to supply mortgage-specific information, such as house information,

10

3.3. Object-oriented analysis and design 11

the real estate broker, et cetera. They can also choose which banks to send the request to. Once sent, the only
course of action is to wait for offers from the banks.

Once a mortgage offer is received, it will be shown to the borrower in their portfolio. The borrower can
then elect to accept the offer, or reject the offer. Once a mortgage offer is accepted the crowd funding cam-
paign will start. At this point the mortgage offer is placed on the open market where investors can submit
investment bids. As with the mortgage offer from banks, offers from investors will be shown in the portfolio.

From now on the market software will take care of all the work until the campaign is either funded, or the
time limit has passed.

3.2.2. The investor’s journey
The investor’s journey starts, like the borrower’s journey, when the person opens the market software. The
first page the person sees, is the profile page. There they can edit their personal information, such as contact
information and IBAN. If it is their first time filling in the profile, they have to choose their role, which is either
borrower or investor. In this section the chosen role will be investor. After the required information is filled
in, they are able to see their portfolio, and search for investment opportunities.

On the portfolio page, investors can monitor their investments. It lists all of the investor’s current invest-
ments, and pending loan offers.

If the investor chooses to actively search for investment opportunities, they can do so at the open market.
When an investment opportunity has been selected, they can see the current investment bids on that partic-
ular opportunity and place a bid of their own. Their investment bids and the status of the bids will be shown
in their portfolio.

3.2.3. The financial institution’s journey
The financial institution’s journey starts, like the borrower’s and the investor’s journey, when they open the
market software.

The first thing the financial institution sees, is the portfolio page. In their portfolio they can see the infor-
mation on all of the mortgages that they currently have running.

From their portfolio they will be able to go to another page, on which their pending loan requests are
displayed. On this page there is a list of all the loan requests from people, who want to take a mortgage, have
submitted.

The financial institution is able to view every one of those loan requests individually. On the individual
loan requests page, they will be able to view personal information about the borrower, including the doc-
uments that are needed to apply for a mortgage, and mortgage specific information, such as the house the
borrower wants to buy and the amount of money they want to borrow. On this page they have the option to
accept or reject the application. When they want to accept an application, they will have to fill in some details
on the mortgage they want to give out. Once the application has been accepted, it will be sent to the borrower
who can then decide if they want to accept or reject their offer.

Financial institutions also have the option to explore the open market. They will be able to see all current
running campaigns and the bids that investors have placed on them, but they will not be able to place bids
themselves.

3.3. Object-oriented analysis and design
In this section the object-oriented analysis will be documented. This analysis will use the problem descrip-
tion, as described in chapter 2, and the customer journey as the source to determine which objects will need
to be represented in the system, how they will behave, and how they will interact with each other.

The first object identified is the User. This User can be either a borrower, investor or financial institution,
which are immediately defined as Role within the system. To simplify the system, a user can only have one
role. Depending on the role, certain information will be required from a user. For instance, it is required to
know the current address of a borrower, since the financial institution needs to know where to send mail.
But this information is not needed for the investor. Based on this, a Profile object has been created which
includes all personal information of a user. To accommodate the extra information required for a borrower a
BorrowersProfile has been created, which extends the Profile. For a mortgage request, an array of documents
is required. These will be stored in a Document object.

When a borrower wants to request a mortgage, a House object is created with details of the house and
its price, which will be sent to the financial institution along with a LoanRequest. In this LoanRequest, the

3.4. Defining the API 12

Figure 3.1: UML class diagram

borrower can specify which type of mortgage, amount wanted, et cetera. As soon as a financial institution
accepts the offer, this request is turned into a Mortgage which can be placed on the open market as part
of a Campaign to crowdfund the remaining part of the mortgage. Finally, investors can start investing in
mortgages by submitting Investment offers.

Since all objects will have to be encoded to be sent over the network, a DatabaseModel has been created
from which all the other objects descent. This DatabaseModel implements functions to encode and decode
the objects and generating unique IDs. The relations between these objects can be seen in the UML class
diagram in figure 3.1.

3.4. Defining the API
To ensure that 3rd-party programs can seamlessly access the decentralized mortgage market an API has been
designed. We call this API the Market API. The goal of this API is to provide all functions required to be able
to complete the customer journeys.

Based on the customer journey analysis, the following API functions have been created:

• create_user()

• create_profile(user, payload)

• create_loan_request(user, payload)

• create_campaign(user, payload)

• place_loan_offer(user, payload)

• login_user(private_key)

• load_profile(user)

• load_investments(user)

• load_open_market()

• load_borrowers_loans(user)

• load_borrowers_offers(user)

• load_all_loan_requests(user)

• load_single_loan_request(payload)

• load_bids(payload)

• load_mortgages(user)

• accept_mortgage_offer(user, payload)

• accept_investment_offer(user, payload)

• accept_loan_request(user, payload)

• reject_mortgage_offer(user, payload)

• reject_investment_offer(user, payload)

• reject_loan_request(user, payload)

• get_role(user)

The full API documentation has been included in appendix E.

3.5. Database structure 13

3.5. Database structure
The market application stores all models in a key-value database. In this section this database will be defined,
and implementation and design considerations will be rationalized.

During the planning phase of the market application, it was made clear that there would be a meeting
with the innovation department of ABN AMRO on December 5th, 2016. We planned on showing them a basic
click-able demo with the core functionalities, that we described in section 3.6. With this date in mind, a
simple database layer was constructed to feed the GUI with the necessary data.

Due to the rapid pace of development, the decision was made to make it a key-value database, using the
unique keys generated by the DatabaseModels as defined in section 3.3 along with the type of object as the
keys. Thus the key of a User object is the user id and the type name is user. While a relational database would
have been preferable due to the ability to search on all fields and the relations between tables, it was deemed
too time consuming to implement and keep up to date while working towards the demo. Furthermore the
current implementation of the market application has no need for these search abilities. However, future
versions of the Market API could certainly benefit from advanced search functions, especially for the banks
to be able to construct SQL queries for their administrative needs.

As seen in figure 3.2 the database consists of two layers. The upper layer, Database, implements the
database API, which the Market API uses to communicate with the database. This database API then stores
the data in the given Backend, which can either be the MemoryBackend or the PersistentBackend. As the
name suggests, the memory backend stores all data in RAM and is flushed as soon as the application is
closed. The persistent backend uses SQLite for persistence. The Dispersy library implements a generic SQLite
database in dispersy.database.Database, which is used to implement the PersistentBackend. The pur-
pose of the MemoryBackend is primarily for development and testing the code, whereas in production the
persistent backend will always be used.

Figure 3.2: Database diagram

3.6. Visualising the core functionalities
Defining the journeys of the customers gives a good understanding of the functionality that the user interface
has to provide. The program’s core functionality can be summarized by the following actions:

Placing a loan request
This can be done by a borrower when they want to apply for a mortgage. This action takes place in the
Place Loan Request screen.

Reviewing loan requests
This can be done by financial institutions to assess a borrower’s financial situation, using their personal
information and to determine if they are eligible for a mortgage. This action takes place in the Pend-
ing Loan Request screen, which consists of two different sections. The first section shows a list of all
pending loan requests, and the second section shows a specific loan request. In the second section the
financial institution can also accept or reject a loan request.

Accepting or rejecting a mortgage
This can be done by a borrower when they want to accept or reject a mortgage. This action takes place
in the Portfolio screen.

Viewing campaigns
This can be done by all customers when they want to view the running crowdfunding campaigns. This
action takes place in the Open Market and Campaign Bids screen, where they can view a list of all
running campaigns and all bids on a specific campaign respectively.

3.6. Visualising the core functionalities 14

Placing bids on campaigns
This can be done by investors when they want to make an investment on a campaign. This action takes
place in the Campaign Bids screen.

Accepting or rejecting bids on campaigns
This can be done by borrowers when they want to accept or reject a bid that was placed on their cam-
paign. This action takes place in the Portfolio screen.

A description of all of the screens that are mentioned above can be found in section 2.5. From these core
functionalities, the first version of the GUI was made. We created the screens using Qt Designer [36], which is
a Qt [35] tool for designing and building GUIs. To control what information is shown in the screens, we used
PyQt5 [34].

The screens that will be made in the next sprint exist to create a smooth user experience and to make the
core functionalities more accessible. The core screens, along with all other screens, can be found in appendix
F.

4
Let’s get connected

In the previous sprint we validated and completed our data models, and started working on visualising the
core functionalities. In this sprint we focused on visualising the rest of the screens, integrating Dispersy and
the blockchain into the market, and implementing document transferring. We extended this sprint by one
week, due to us wanting to implement multiple functionalities. We also submitted our code to SIG for a code
quality check.

4.1. Visualising the market
In the core screens described in section 3.6, not all functionalities of the market had been created yet. Those
missing functionalities can be summarized by the following actions:

Entering personal information
This can be done by borrowers and investors to make sure that the parties involved know where the
funding or interest needs to go. This action takes place in the Profile screen. The personal information
will be shown in the Portfolio screen once an offer has been accepted.

Uploading documents needed to apply for a mortgage
This can be done by borrowers before they can place a loan request. This action takes place in the
Profile screen.

Viewing current loans
This can be done by borrowers and investors when they want to see their accepted loans. This action
takes place in the Portfolio screen.

Viewing current mortgages
This can be done by financial institutions when they want to see their accepted mortgages. This action
takes place in the Portfolio screen.

Navigate between different screens
This can be done by all users when they want to view a different screen. This action takes place in all
screens. All screens contain a navigation bar at the top of the page that contains all screens that the
user has access to.

A description of all of the screens that are mentioned above can be found in section 2.5. With these func-
tionalities, the full version of the GUI has been completed. All of the screens, including the core screens, can
be found in appendix F.

4.2. Information flow design
There are three big stages to the software, which are:

1. sending, accepting or rejecting a loan request;

15

4.2. Information flow design 16

2. sending, accepting or rejecting a mortgage offer;

3. and sending, accepting or rejecting an investment offer.

For each of those stages we have defined the information flow in the system. The stages each apply to a
model, which are the LoanRequest, Mortgage, and the Investment models respectively. The model specifica-
tion can be found in section 3.3.

When a borrower sends a loan request to a financial institution, the financial institution can respond by
either rejecting the loan request or offering a mortgage to the borrower. The information flow for a loan
request can be found in the sequence diagram in figure 4.1.

Figure 4.1: Information flow for loan request

When a financial institution has sent a mortgage offer to a borrower, the borrower has the option to re-
spond by either rejecting or accepting the mortgage. When the borrower accepts the mortgage, the borrower
also has to broadcast a message to other users to let them know that a new campaign has started. The infor-
mation flow for a mortgage can be found in the sequence diagram in figure 4.2.

Figure 4.2: Information flow for mortgage

Once a borrower has accepted a mortgage, investors can place bids on their campaign by placing an
investment offer on the borrower’s campaign. The borrower can respond by either rejecting or accepting
the investment. The information flow for an investment can be found in the sequence diagram in figure 4.3.

4.3. Integrating Dispersy 17

Figure 4.3: Information flow for investment

4.3. Integrating Dispersy
Dispersy lies at the heart of the decentralized mortgage marketplace. Integrating Dispersy to the market
community proved to be a considerable challenge. It introduces a major paradigm change, since the program
must work properly across different computers with each a different state. At the heart of Dispersy lies a
simple identity and messaging system. These two systems have been fully integrated into the marketplace.
In the following two subsections these integrations will be discussed.

4.3.1. Dispersy and Market Identity
Dispersy implements an identity system based on public/private keys. A Member is someone who is part
of a Dispersy community, and is identified by an unique public key. As soon as the member is connected, a
Candidate is created. A Candidate is the object representation of the network address of the Member. The
member answers the question who, and the candidate the question where.

Having read the Dispersy documentation prior to designing the API, the decision was made to identify the
users in the market using public/private pair as well. To ensure that the identity of an user is always known
offline as well as online, a key is generated and used for the creation of the Dispersy member and the market
user. This key pair is then saved in the local database to be retrieved for future use. This process is completely
transparent to the user.

The candidate however, is not saved to any persistent database, rather to a memory location in the Market
API. Candidates are volatile, IP address change often, connections get dropped, et cetera. Thus as soon as an
user goes offline, the candidates list, which associates API User objects with candidates, is lost and has to be
rebuilt at the next connection to the community.

4.3.2. Dispersy message sharing
Dispersy implements a variety of ways messages can be sent between peers. The method of sending a mes-
sage is called a Distribution in Dispersy, and the recipient of a message is determined by the Destination.
There are multiple implemented distributions and destinations, but for this project only two destinations
and distributions will be used.

The CommunityDestination specifies that a message must be sent to a (specified) maximum number of
(randomly selected) online members of the Dispersy community. To send a message to specific peers, the
CandidateDestination must be used, which expects a list of peers to whom the message must be sent.

These destinations can be reached using two distribution methods. Using the DirectDistribution the mes-
sage is sent directly to a peer, then discarded. This distribution is used in the market application alongside
CandidateDestination to handle direct messages to peers. As mentioned above, the CommunityDestination
sends the message to a list of randomly selected peers, as such to ensure that all peers receive the message,
DirectDistribution is not advisable in this case, as after the randomly selected peers receive the message, it is
discarded. This is solved using the FullSyncDistribution.

The FullSyncDistribution instructs Dispersy to store the message for further propagation in the future.
Furthermore, newly connected peers can ask online peers to send them all messages that they missed since
they were last online. This message type is used for certain messages which ought to be shared to as many

4.4. Communication protocol specification 18

peers as possible, such as open campaigns, investments, et cetera. This distribution method will be used
alongside the CommunityDestination to share all public data.

When using FullSyncDistribution, models are constantly sent around in the network. Thus it is possible
that two versions of the same model are in circulation. Take for instance the Campaign object, which is
updated every time an investment is accepted to set the remaining amount that needs to be crowdfunded. To
ensure that newer models are not overwritten by older versions, the notion of signing a model is introduced.
By signing a model, a user signs the hash of the content of the model, and sets the signing time. Thus by
comparing this time, it can easily be determined if a model is newer. This signing step takes place on all
models before they are sent over the network.

4.4. Communication protocol specification
Defined in this section are the Dispersy messages and payloads, the communication between the Market API
and the Dispersy Community, and the implementation of signed Dispersy messages.

In this section we will refer to two types of messages, Dispersy messages and Market API messages. These
are not interchangeable. Dispersy messages refer to implementations of Dispersy messages as defined in
dispersy.message.Message. Market API messages on the contrary are defined by the market application
to specify which handler should process the content of a specific incoming Dispersy message. This was done
in an attempt to limit the amount of Dispersy messages needed and prevent duplicate code.

First the Dispersy messages will be defined, followed by the Market API messages and finally the signed
Dispersy messages.

4.4.1. Dispersy Messages
As described in 4.3, messages lie at the heart of Dispersy. Six messages have been defined for the mortgage
market community. In Dispersy a message must always have a Payload, which is a class that specifies which
data will be carried in the message. These payloads must have a decoder and encoder to serialize the data for
transfer over UDP. To prevent having a host of payloads, encoders and decoders effort was made to make the
payloads as general as possible to enable re-use. The payloads implemented are:

DatabaseModelPayload
A payload with two attributes: fields and models. Where fields is the list of keys pertaining to Database-
Models in models.

APIMessagePayload
This payload is similar to the DatabaseModelPayload, but with an extra attribute request. This request
field is used to specify which API message handler needs to be used.

SignedConfirmPayload
This payload holds the following fields: benefactor, beneficiary, agreement_benefactor_encoded, agree-
ment_beneficiary_encoded, sequence_number_benefactor, sequence_number_beneficiary, previous_hash_benefactor,
previous_hash_beneficiary, signature_benefactor, signature_beneficiary, time. These hold the keys of
the two signing parties, the agreements of both parties (which should be equal), the sequence number
of the block in the blockchain (defined in section 4.6), the hash of the previous item in the blockchain,
and the signature of the message. Finally the time is saved.

The messages using these payloads are defined below.

introduce_user
Sent as a reply to the built-in Dispersy message to introduce oneself to other nodes
(Community.on_introduction_response). Contains a DatabaseModelPayload with the User object.

api_message_community
This is an API message sent to the entire community using the FullSyncDistribution type. FullSyncDis-
tribution enables the gossiping of messages, which will ensure that users who log in at a later time
can get the message with a dispersy-sync request. Example usage is for instance propagation of a new
campaign. These messages are saved in the Dispersy database for further propagation.

4.4. Communication protocol specification 19

api_message_candidate
This is an API message sent directly to one or more explicitly given candidates. All communication be-
tween a borrower and a bank happens through direct messages. These messages are discarded directly
after being received.

signed_confirm
The signed_confirm message is specifically created to seal an agreement between two parties. Using
the DoubleMemberAuthentication provided by Dispersy, it requires that both parties sign the message
if they agree with the message content. The message content being either a Mortgage or Investment.
Thus before signing the message the system checks if the offer received is consistent with what has
been agreed with. Only agreements which have passed through the signed_confirm process are treated
as final and binding. More information about how signed_confirm is implemented can be found in
section 4.6.2.

4.4.2. Market API Messages
In this section we describe the messages that are needed for the Market API (see 3.4) and its communication
protocols, which were described in section 4.2. These messages are different from the Dispersy messages
described in section 4.4.1. The Market API messages will be shared across the network in the same Dispersy
payload. This was done to remove the amount of duplicated code, since all API messages have the same
payload format.

LoanRequest
A LoanRequest message is sent by a borrower to a financial institution, when they create a loan request.
The payload of the message contains the objects LoanRequest, House and Profile.

LoanRequestReject
A LoanRequestRejected message is sent by a financial institution to a borrower, when it rejects a loan
request. The payload of the message contains the LoanRequest object.

MortgageOffer
A MortgageOffer message is sent by a financial institution to a borrower, when it accepts a loan request.
The payload of the message contains the LoanRequest and Mortgage objects.

MortgageAcceptSigned
A MortgageAcceptSigned message is sent directly by a borrower to a financial institution, when they
accept the mortgage offer. The payload of the message contains the Mortgage and Campaign objects.

MortgageAcceptUnsigned
A MortgageAcceptUnsigned message is sent by a borrower to all other users when they accept a mort-
gage offer. The payload of the message contains the LoanRequest, Mortgage, House and Campaign
objects.

MortgageReject
A MortgageReject message is sent by a borrower to a financial institution, when they reject a mortgage
offer. The payload of the message contains the Mortgage object.

InvestmentOffer
An InvestmentOffer message is sent by an investor to a borrower, when they place an investment offer.
The payload of the message contains the Investment and the Profile object.

InvestmentAccept
An InvestmentAccept message is sent by a borrower to an investor, when they accept the investment
offer. The payload of the message contains the Investment and the BorrowersProfile object.

InvestmentReject
An InvestmentReject message is sent by a borrower to an investor, when they reject the investment
offer. The payload of the message contains the Investment object.

4.5. Document Sharing 20

CampaignBid
A CampaignBid message is sent by either an investor or a borrower, when they place a bid on a cam-
paign or accept or reject a bid respectively. The payload of the message contains the Investment and
the Campaign object.

4.5. Document Sharing
Dispersy is a great platform to host the distibuted market. The program uses the Dispersy message packages
to transfer different payloads between users. While that works very well for small payloads, its maximum pay-
load size can be too small to hold a document. While theoretically it is still possible to send larger documents
over dispersy, it seemed more practical to use a protocol like TFTP [44] to transfer the documents.

To transfer the documents the program uses a module named tftpy [45]. With this module files can easily
be uploaded to a server or downloaded from a server. In this case we want to upload the documents of a
borrower to the banks that were chosen during the placement of a loan request.

For simplicity, we make the assumption that the banks are always online and are hosting a TFTP-server.
Another assumption is that every user needs to upload the same set of documents. Further we assume when
the transfer of the documents fails, we will be able to try to transfer them again on a later date.

When the user places a loan request, all files are added to a queue and uploaded to all chosen banks one
by one. If something goes wrong with transferring the documents, the jobs are saved to be re-sent on a later
date.

4.6. Blockchain
To ensure that no one can lie about an agreement they have made, a blockchain is used. We re-used the
MultiChain [31], but changed the body to save specific information relevant to our market. Another change is
that we use limited sharing in our blockchain. Every block in the blockchain stands for an agreement between
two users of the market. Only these two users have this block in their blockchain. The blockchains of these
two users will not be synced with each other to form a larger blockchain for both users.

4.6.1. Architecture
The blockchain consists of individual blocks. Every block contains the fields in the SignedConfirmPayload
listed in 4.4.1 and two other fields: previous_hash and sequence_number. The contents of a block can be
seen in figure 4.4. The agreement data, as shown in the figure, is the same for both users that have the block
in their blockchain and this is the part that gets hashed. The last two fields are different for every user. The
previous_hash is the hash of the latest block in the blockchain and the sequence_number is the number of
the block to be added, which should be the previous sequence number plus one.

Figure 4.4: The fields in a block

The blocks of a blockchain are linked to each other through the hashes of the blocks. As each block con-
tains the hash of the block before them, an ordered chain of the blocks is created. The first block added to
the blockchain is the genesis block and this block has sequence number zero. The previous_hash of the next
block to be added is the hash of the genesis block. Another way to order the blocks to get the whole chain is by
the block’s sequence number. By using the sequence number of a block, we do not need to traverse through
the hashes to get the chain. A graphical representation of a part of a blockchain can be found in figure 4.5. In
this figure it can be seen how the blocks are linked to each other.

4.6. Blockchain 21

Figure 4.5: A chain of blocks in a blockchain

4.6.2. Signed messages and the blockchain
Dispersy implements signed message, which are messages which are signed by two or more parties. Each
party signs the payload using their private key. The purpose of these messages is to prove that the parties all
agree over the content of a message.

When the beneficiary (borrower) accepts a mortgage offer or an investment offer, the benefactor (bank or
investor) will create and send out a Dispersy signature request message, with only the request part filled in,
to the beneficiary. This message contains the SignedConfirmPayload listed in 4.4.1, but not all fields are filled
in by the benefactor. The fields beneficiary, agreement_beneficiary, sequence_number_beneficiary, previ-
ous_hash_beneficiary and signature_beneficiary will be filled in by the beneficiary. We call this the response
part. The benefactor persists the message and the corresponding block. A hash will be created from the
message.

Upon receiving the signature request message, the beneficiary decides whether to accept or drop the
message. This decision is made by comparing the agreement sent by the benefactor with the agreement
the beneficiary has in its local database. When it has been decided to accept the message, the beneficiary
will create and sign the response part of the message, and send it back to the benefactor. The message that
is being sent back is called the signature response message. The beneficiary persists the message and the
corresponding block. A hash will be created from the message.

Once the benefactor receives the signature response message, a final check will be performed. If the agree-
ment_benefactor and agreement_beneficiary are the same, and there are no inconsistencies in the payload,
then the benefactor will accept the message. At this point the signing process is complete. The benefactor
updates the message and the corresponding block. A new hash will be created from the message.

A sequence diagram of the signed messages protocol can be found in figure 4.6

Figure 4.6: Signed messages protocol

4.6. Blockchain 22

4.6.3. Blockchain storage model
The blockchain is stored in a SQLite database. The same database used for the market application (see 3.5)
is utilized for this purpose, with a table specifically for the blockchain. An interface BlockChain has been
defined in market.database.backends.BlockChain, which must be implemented by all backends sup-
porting the blockchain. Currently only the PersistentBackend supports the blockchain.

The BlockChain interface defines the following public functions:

add_block
Persist a block to the blockchain. This can be an incomplete block, which is only completed once it is
updated with the information from the beneficiary.

update_block_with_beneficiary
Update an existing block with information from the beneficiary. Only the relevant fields are updated
with the new data.

get_latest_hash
Get the hash of the latest block in the chain.

get_latest_sequence_number
Get the sequence number of the latest block in the chain.

get_next_sequence_number
Get the sequence number of the latest block in the chain plus one. If there is no latest block, the next
sequence number is zero.

get_by_hash
Returns a block saved in the chain with the matching hash.

get_by_public_key_and_sequence_number
Returns a block saved in the chain where the given public key is equal to either benefactor or benefi-
ciary, and the given sequence number is equal to sequence_number_benefactor or
sequence_number_beneficiary

create_genesis_block
Returns the genesis block.

check_add_genesis_block
If there are no blocks in the blockchain, persist the genesis block to the blockchain.

5
Quality assurance

In the final phase of the project, we focused on extending the test suite of the market and maturing the code.
As per the requirements, we have sent our code for evaluation to the Software Improvement Group (SIG).
At SIG the code will be reviewed and given a rating representing how maintainable it is, according to their
model. The code will be sent for review twice, in this chapter we will discuss the outcome of these reviews.
The original feedback reports can be found in appendix G.

5.1. Unit testing
During the development of the market, we wrote unit tests to be sure that every feature of the market worked
properly, and keeps working as intended during the development process. Unit tests test the functionality
of small units of code, in our case a unit test tests a single function. That way the unit tests are independent
of each other, and a functionality only has to be tested once. For the unit tests we used the built-in unittest
library and the nose library [32], with nose being used to run the test and generate reports.

In some tests it is necessary to use certain objects that do not need to be tested themselves, or that require
substantial amount of data and parameters to initialize (such as Dispersy). To simplify the tests and to be
sure that only the function that we wanted to test is being tested, we mocked other objects that were needed
in the test. To create mocks we used the mock library [27].

Ideally all tests are run locally before an update is pushed to the revision control server, but this is not
always the case. To make sure test-breaking changes are caught as soon as possible we employed continuous
integration. For continuous integration Travis CI [47] was used, along with Jenkins [20] (provided by the
Blockchain Lab). Not all tests were able to run on these continuous integration platforms, the requirements
for running the GUI tests using PyQT’s testing framework could not be installed. Nose was configured to
ignore GUI tests to get around this issue.

To measure the extent of code tested by our tests, we took code coverage into account. Code coverage
reports show what percentage of the code has been tested. If all of the lines of code in a file have been executed
during the tests, the code coverage will be 100% for that specific file. These reports were generated by nose,
which generated raw .xml files, which were then parsed by Jenkins’s cobertura plugin or pycobertura.

Our coverage report can be found in table 5.1.

5.2. Integration testing
In this stage of the development process, we developed some integration tests to check the functionality of
the whole program at once.

To perform the integration tests we set up some scenarios. We created different scenarios for each role,
which means that we have scenarios for borrowers, financial institutions and investors.

The borrower’s scenario creates a profile and then it sends a loan request to all banks. When a loan request
has been sent it waits until it gets mortgage offers, and when mortgage offers have been received it accepts
a random mortgage. After accepting a mortgage it waits until it gets investment bids, and accepts random
investment bids when they have been received.

The investor’s scenario creates a profile and then waits for campaigns to be available on the open market.
When it has found some campaigns, it sends investment offers to random campaigns.

23

5.2. Integration testing 24

Module Statements Missing Excluded Coverage
market.py 4 0 0 100%
market/api.py 0 0 0 100%
market/api/api.py 410 11 0 97%
market/api/crypto.py 10 3 0 70%
market/community.py 0 0 0 100%
market/community/community.py 315 26 0 92%
market/community/conversion.py 74 16 0 78%
market/community/encoding.py 165 3 0 98%
market/community/payload.py 95 4 0 96%
market/community/queue.py 73 9 0 88%
market/controllers.py 0 0 0 100%
market/controllers/banks_portfolio_controller.py 24 0 0 100%
market/controllers/borrowers_portfolio_controller.py 52 0 0 100%
market/controllers/campaign_bids_controller.py 36 0 0 100%
market/controllers/investors_portfolio_controller.py 32 0 0 100%
market/controllers/main_window_controller.py 51 4 0 92%
market/controllers/navigation.py 81 4 0 95%
market/controllers/openmarket_controller.py 24 0 0 100%
market/controllers/pending_loan_requests_1_controller.py 33 0 0 100%
market/controllers/pending_loan_requests_2_controller.py 63 7 0 89%
market/controllers/place_loan_request_controller.py 32 0 0 100%
market/controllers/profile_controller.py 83 1 0 99%
market/database.py 0 0 0 100%
market/database/backends.py 208 19 0 91%
market/database/database.py 53 10 0 81%
market/models.py 86 1 0 99%
market/models/document.py 22 12 0 45%
market/models/house.py 21 0 0 100%
market/models/loans.py 165 6 0 96%
market/models/profiles.py 45 0 0 100%
market/models/role.py 6 0 0 100%
market/models/user.py 42 4 0 90%
Total 2305 140 0 94%

Table 5.1: Coverage report

5.3. Code quality SIG 25

The financial institution’s scenario waits for loan requests to come in. When loan requests has been re-
ceived it accepts them randomly.

To run the scenarios, data has to be inserted. We generate fake data to put into the scenarios using the
Faker [13] Python package.

By running the scenarios at the same time we could verify the functionality, performance, and reliability
of the market. We were able to view the GUI to see if the right information was displayed, and we were able
to check the database to see if the objects have been saved correctly.

5.3. Code quality SIG
In this section we will describe the feedback we got from SIG on the quality of our code, and describe how we
addressed it. The full feedback can be found in appendix G.

The market application was sent to SIG for the first review on the 22nd of December 2016. The overall
score for the system at this point was 4 out of 5 stars. Overall the code scored 5 stars for its small volume, lack
of duplication and balance of components. 4 stars for the simple units, and loosely coupled modules and 3
stars for component independence.

The main issues identified by SIG were related to unit size and unit interfacing. Unit size refers to the
length (lines of code) of functions, with each function longer than the average length lowering the score. The
rationale behind having multiple shorter functions as opposed to one long function is to limit the amount
of tasks a function has. This makes the function easier to understand and test. Unit interfacing relates to
the amount of functions with an above-average number of parameters. Having an above-average amount of
parameters usually indicates a lack of abstraction.

The unit size issues were primarily in the GUI related code. SIG noted that most of the longer functions
were generated files by PyQt5. This has however already been solved as the GUI is now generated during
run-time. A few classes have been refactored to split the functions into smaller units.

As for unit interfacing, the only function identified with an excessive number of parameters is the Signed-
ConfirmPayload (defined in 4.4.1) with 13 parameters. The problem with refactoring this payload to accept an
object consolidating related parameters is that this would complicate the encoders and decoders of the pay-
load. As such we have decided to leave this constructor as it is. To improve readability however, all instances
where this constructor will be called have been changed to use named parameters.

6
Conclusion and evaluation

In the past ten weeks, we have fulfilled all the Must Have requirements. In this chapter we will discuss the
fulfillment of the project requirements listed in section 2.4 and discuss the challenges we have faced during
the project. Finally we suggest recommendations for future work.

6.1. Fulfillment of requirements
In this section we look at the project requirements, and discuss which requirements have been fulfilled. The
requirements that have been fulfilled are marked green, and the requirements that have not been fulfilled are
marked red.

6.1.1. Must Have
• Borrower can place loan requests.

• Borrower can upload documents needed to apply for a mortgage.

• Borrower can see offers they get from investors and financial institutions.

• Borrower can accept offers they get from investors and financial institutions.

• Investor can see which campaigns are available.

• Investor can place an offer on a campaign.

• Financial institution can create a quote for a mortgage.

• Financial institution can see their pending loan requests.

• Financial institution can review pending loan requests.

• Financial institution can accept pending loan requests.

• Python 2 to be able to interface with Tribler and Dispersy.

• PyQt for the GUI.
We used PyQt to control the GUI.

• Tests and coverage.
We achieved this by creating unit tests and generating a coverage report every time we ran the tests.

• Full transparency. Everything open-source.
All of our code is publicly accessible athttps://github.com/Jumba/decentralized-mortgage-market.

26

https://github.com/Jumba/decentralized-mortgage-market

6.1. Fulfillment of requirements 27

6.1.2. Should Have
• Borrower can reject offers they get from investors and financial institutions.

• Investor can see which campaign they have currently invested in.

• Financial institution can see which mortgages they currently have provided.

• Financial institution can reject pending loan requests.

• Scalable.
It is scalable, because we implemented the market upon Dispersy. Tribler is proof for the scalability of
Dispersy.

• Blockchain technology.
We implemented a blockchain into the market to save agreements that have been made between two
parties.

6.1.3. Could Have
• Borrower can see which campaigns are available.

• Investor can resell their investment.

• Investor can invest passively.

• Financial institution can see which campaigns are available.

• Financial institution can determine the maximum interest rate that a borrower is allowed to pay an
investor for the loan.

• Financial institution can recommend an interest rate that the borrower can pay to an investor for the
loan.

• Secure storage and transfer of information.

• Encrypt and decrypt user documents.

6.1.4. Won’t Have
• Borrower can see how much has already been paid off.

• Investor can see how much has already been paid off.

• Financial institution can see how much has already been paid off.

• Regulator can see the total financial health of all the active loans.

• Transactions can be done through the system.

• Smart contracts to ensure binding agreements between stakeholders.

• The system can do a risk assessment.

6.2. Challenges 28

6.2. Challenges
During the development of the market we faced some challenges. In this section those challenges, and how
we worked through them will be discussed.

One of the challenges was integrating Dispersy into the market. Getting dispersy to work was challenging
due to its documentation. While it was helpful, we had trouble getting it to work because the example code
was incorrect. With the help of the people at the Blockchain Lab this was resolved.

We also had some trouble understanding how Dispersy worked at first. Due to the lack of in-depth docu-
mentation, a lot of Dispersy workings had to be deduced from Dispersy unit tests and the implementation of
functions.

We had some trouble with Qt5 during the first couple of weeks. While it has proven to be a great frame-
work, some of the functionalities were not working without some unintuitive tweaking. Another problem
that was encountered with Qt, and specifically PyQt5, was that the Python documentation was missing. In-
stead, the official website referred to the C++ implementation, which in some cases had functions that were
unknown in the Python version. We solved this with the help of the people at the Blockchain Lab.

Getting Dispersy to work alongside Qt proved to be an issue, since both Qt5 and Dispersy have an event
loop that were competing for attention. The solution was to start twisted [50], which is an event-driven net-
working engine that Dispersy uses, using a qt5reactor [37] which handles the Qt5 event loop.

Sending files proved to be an issue, since we did not account for the maximum message size of 1500 bytes
employed by Dispersy since it is based on UDP, and they are using the maximum MTU on the internet of 1500
bytes to prevent fragmentation. The solution we found was to send the files using the TFTP protocol.

6.3. Known issues and future work
Currently there are a few known issues present in the market application.

As mentioned in the previous section about the challenges encountered, the maximum message size in
Dispersy is 1500 bytes. It is currently possible for some messages to exceed this size, at which point they get
dropped. While this is a rare occurrence, it needs to be resolved to ensure consistent and reliable messaging.

Further there are some significant security risks with the current implementation of the models, which
are described in section 3.3, and the way they are propagated through the network. Any malicious user can
modify their market application to send models throughout the network with incorrect information. The
integrity of models is not ensured by the program, and as such there is no way of knowing if a model that is
being distributed through the network has been changed by a peer.

The market is susceptible to attacks, due to its current implementation placing a significant amount of
trust in the goodwill of the users. Take for instance a borrower looking for investors for his mortgage. Anyone
can be an investor, pledge a certain amount to a campaign, and then disappear forever. By doing this repeat-
edly for all campaigns, an attacker can easily disrupt the system by not giving genuine investors the chance to
invest in a campaign. A solution to this is to move away from trusting the users, and implement a blockchain
with smart contracts. Smart contracts can be used to enforce a contract by making sure that nobody can back
away from an agreement. However, because smart contracts are currently a work in progress and have proven
to be a complex matter, the functionality has been deemed as out of scope.

There can be an issue when transferring documents. In the event that documents fail to be sent during
the creation of a loan request, the program will retry multiple times to resend these files and send out the
loan request even if not all documents were sent. The issue here is that the program will retry to send the
documents only five times, which means that in some cases the bank does not receive all of the documents
that belong to a loan request.

6.4. Conclusion
The goal of this project was to create a decentralized market in which mortgages can be crowdfunded. Users
should be able to get a mortgage crowdfunded, and they should be able to invest in other users’ crowdfunding
campaigns.

To design the market, related initiatives were researched first. Using that research, customer journeys
were defined for users with different goals using flowcharts. Using those flowcharts we started designing the
GUI, the database, and we created an API to be able to get the right information from the database to show in
the GUI.

After creating the core functionalities, we defined the information flow in the system. Using the infor-

6.4. Conclusion 29

mation flow we started integrating Dispersy into the market, to be able to identify users and send messages
between users. Due to Dispersy having a maximum message size, the documents that are needed to apply
for a mortgage could not be send through Dispersy. To be able to transfer those documents, we made use of
the TFTP protocol. To ensure that agreements made between two users (e.g. a financial institution giving a
borrower a mortgage) can not be altered, a blockchain has been implemented.

The market that is developed for this project is a working decentralized platform that can connect users
with different goals. Users that are in need of funding to buy a house are able to get a mortgage quote from
financial institutions, and they are able to receive investment bids from users that want to invest. Financial
institutions can receive mortgage applications from users that want to buy a house, and partially fund those
users’ mortgages. Users that are looking for an investing opportunity are able to view open crowdfunding
campaigns, and they are able to place investment bids on those campaigns.

Bibliography

[1] ABN AMRO. ABN AMRO. URL https://www.abnamro.nl/.

[2] Blandlord. Blandlord. URL https://blandlord.com/.

[3] Blockchain Lab. Blockchain Lab. URL http://www.blockchain-lab.org/.

[4] Blockchains. Blockchains: The great chain of being sure about things, 2015. URL http://www.
economist.com/news/briefing/21677228-technology-behind-bitcoin-lets-people-who-do-not-know-or-trust-each-other-build-dependable.

[5] Bouwsteen. Bouwsteen. URL http://www.bouwsteen.info/.

[6] Chamber of Commerce. Kamer van Koophandel. URL https://www.kvk.nl/.

[7] Code Of Conduct For Mortgage Loans. Gedragscode Hypothecaire Financieringen / Code Of Conduct
For Mortgage Loans, 2011. URL https://www.nvb.nl/publicaties-standpunten/publicaties/
1671/gedragscode-hypothecaire-financieringen-code-of-conduct-for-mortgage-loans.
html.

[8] Collin Crowdfund. Collin Crowdfund. URL https://www.collincrowdfund.nl/.

[9] CrowdAboutNow. CrowdAboutNow. URL https://crowdaboutnow.nl/.

[10] D&B Rating. D&B Rating. URL http://www.dnb-nederland.nl/dnb-data/rating.

[11] Dispersy. Dispersy. URL https://github.com/Tribler/dispersy.

[12] Dutch National Bank. De Nederlandsche Bank. URL https://www.dnb.nl/.

[13] Faker. fake-factory 0.5.5. URL https://pypi.python.org/pypi/fake-factory/0.5.5.

[14] Fundrise. Fundrise. URL https://fundrise.com/.

[15] Geldvoorelkaar. geldvoorelkaar. URL http://www.geldvoorelkaar.nl/.

[16] GitHub. GitHub. URL https://github.com/.

[17] Gradefix. Gradefix. URL https://gradefix.com/.

[18] Greencrowd. Greencrowd. URL https://greencrowd.nl/.

[19] Hypotheek Rijksoverheid. Hypotheek. URL https://www.rijksoverheid.nl/onderwerpen/
koopwoning/inhoud/hypotheek.

[20] Jenkins. Jenkins. URL https://jenkins.io/.

[21] Jungo. Jungo. URL https://jungo.nl.

[22] Kapitaal op Maat. Kapitaal op Maat. URL https://www.kapitaalopmaat.nl/.

[23] Vivek Kapoor, Vivek Sonny Abraham, and Ramesh Singh. Elliptic curve cryptography. Ubiquity, 2008
(May):7, 2008.

[24] Loan to Value Ratio. Loan-To-Value Ratio - LTV Ratio, (n.d.). URL http://www.investopedia.com/
terms/l/loantovalue.asp.

[25] Roy Meijer. TU Delft and ABN AMRO to collaborate on the development of blockchain ap-
plications, 2016. URL http://www.tudelft.nl/en/current/latest-news/article/detail/
samenwerking-tu-delft-en-abn-amro-voor-ontwikkeling-blockchain-toepassingen/.

30

https://www.abnamro.nl/
https://blandlord.com/
http://www.blockchain-lab.org/
http://www.economist.com/news/briefing/21677228-technology-behind-bitcoin-lets-people-who-do-not-know-or-trust-each-other-build-dependable
http://www.economist.com/news/briefing/21677228-technology-behind-bitcoin-lets-people-who-do-not-know-or-trust-each-other-build-dependable
http://www.bouwsteen.info/
https://www.kvk.nl/
https://www.nvb.nl/publicaties-standpunten/publicaties/1671/gedragscode-hypothecaire-financieringen-code-of-conduct-for-mortgage-loans.html
https://www.nvb.nl/publicaties-standpunten/publicaties/1671/gedragscode-hypothecaire-financieringen-code-of-conduct-for-mortgage-loans.html
https://www.nvb.nl/publicaties-standpunten/publicaties/1671/gedragscode-hypothecaire-financieringen-code-of-conduct-for-mortgage-loans.html
https://www.collincrowdfund.nl/
https://crowdaboutnow.nl/
http://www.dnb-nederland.nl/dnb-data/rating
https://github.com/Tribler/dispersy
https://www.dnb.nl/
https://pypi.python.org/pypi/fake-factory/0.5.5
https://fundrise.com/
http://www.geldvoorelkaar.nl/
https://github.com/
https://gradefix.com/
https://greencrowd.nl/
https://www.rijksoverheid.nl/onderwerpen/koopwoning/inhoud/hypotheek
https://www.rijksoverheid.nl/onderwerpen/koopwoning/inhoud/hypotheek
https://jenkins.io/
https://jungo.nl
https://www.kapitaalopmaat.nl/
http://www.investopedia.com/terms/l/loantovalue.asp
http://www.investopedia.com/terms/l/loantovalue.asp
http://www.tudelft.nl/en/current/latest-news/article/detail/samenwerking-tu-delft-en-abn-amro-voor-ontwikkeling-blockchain-toepassingen/
http://www.tudelft.nl/en/current/latest-news/article/detail/samenwerking-tu-delft-en-abn-amro-voor-ontwikkeling-blockchain-toepassingen/

Bibliography 31

[26] J. Winter M.J.G. Olsthoorn. Decentral market: self-regulating electronic market. Master’s thesis, Delft
University of Technology, 2016.

[27] Mock. Mock. URL https://pypi.python.org/pypi/mock.

[28] MoneYou. MoneYou. URL https://www.moneyou.nl.

[29] MoSCoW Prioritisation. MoSCoW Prioritisation. URL https://www.agilebusiness.org/content/
moscow-prioritisation.

[30] NHP Types of Mortgages. NHP Soorten hypotheken. URL https://nhp.nl/page/?permalink=
hypotheken/informatie/hypotheekvormen/soorten-hypotheken&piranha-culture=nl.

[31] Steffan D Norberhuis. MultiChain: A cybercurrency for cooperation. PhD thesis, TU Delft, Delft Univer-
sity of Technology, 2015.

[32] Nosetests. Nosetests. URL http://nose.readthedocs.io/en/latest/.

[33] Project Description. Project Description issue on Github, 2016. URL https://github.com/Tribler/
tribler/issues/2606.

[34] PyQt. PyQT. URL https://riverbankcomputing.com/software/pyqt/intro.

[35] Qt. Qt. URL https://www.qt.io/.

[36] Qt Designer. Qt Designer. URL http://doc.qt.io/qt-5/qtdesigner-manual.html.

[37] Qt5reactor. qt5reactor. URL https://github.com/sunu/qt5reactor.

[38] Radon. Radon. URL https://github.com/rubik/radon/.

[39] RealtyShares. RealtyShares. URL https://www.realtyshares.com/.

[40] RTL Z / Erik Rezelman. DNB-topman Klaas Knot: aftrek hypotheekrente
versneld afbouwen, 2016. URL http://www.rtlnieuws.nl/geld-en-werk/
dnb-topman-klaas-knot-aftrek-hypotheekrente-versneld-afbouwen.

[41] Scrum. Scrum Alliance. URL https://www.scrumalliance.org/.

[42] SIG. Software Improvement Group. URL https://www.sig.eu/.

[43] Manoj Singh. The 2007-08 Financial Crisis In Review, (n.d.). URL http://www.investopedia.com/
articles/economics/09/financial-crisis-review.asp.

[44] TFTP. RFC 1350 - The TFTP Protocol (Revision 2). URL https://tools.ietf.org/html/rfc1350.

[45] TFTPy. TFTPy - A Pure Python TFTP Protocol Implementation. URL http://tftpy.sourceforge.
net/.

[46] The Dutch Authority for the Financial Markets (AFM). Autoriteit Financiële Markten. URL https://
www.afm.nl/en.

[47] Travis CI. Travis CI. URL https://travis-ci.org/.

[48] Tribler. About Tribler. URL https://www.tribler.org/about.html.

[49] Tribler Wiki. Tribler GitHub Wiki. URL https://github.com/Tribler/tribler/wiki.

[50] Twisted. Twisted. URL https://twistedmatrix.com/trac/.

[51] Upstart. Upstart. URL https://www.upstart.com/.

[52] Xenon. Xenon. URL https://github.com/rubik/xenon.

https://pypi.python.org/pypi/mock
https://www.moneyou.nl
https://www.agilebusiness.org/content/moscow-prioritisation
https://www.agilebusiness.org/content/moscow-prioritisation
https://nhp.nl/page/?permalink=hypotheken/informatie/hypotheekvormen/soorten-hypotheken&piranha-culture=nl
https://nhp.nl/page/?permalink=hypotheken/informatie/hypotheekvormen/soorten-hypotheken&piranha-culture=nl
http://nose.readthedocs.io/en/latest/
https://github.com/Tribler/tribler/issues/2606
https://github.com/Tribler/tribler/issues/2606
https://riverbankcomputing.com/software/pyqt/intro
https://www.qt.io/
http://doc.qt.io/qt-5/qtdesigner-manual.html
https://github.com/sunu/qt5reactor
https://github.com/rubik/radon/
https://www.realtyshares.com/
http://www.rtlnieuws.nl/geld-en-werk/dnb-topman-klaas-knot-aftrek-hypotheekrente-versneld-afbouwen
http://www.rtlnieuws.nl/geld-en-werk/dnb-topman-klaas-knot-aftrek-hypotheekrente-versneld-afbouwen
https://www.scrumalliance.org/
https://www.sig.eu/
http://www.investopedia.com/articles/economics/09/financial-crisis-review.asp
http://www.investopedia.com/articles/economics/09/financial-crisis-review.asp
https://tools.ietf.org/html/rfc1350
http://tftpy.sourceforge.net/
http://tftpy.sourceforge.net/
https://www.afm.nl/en
https://www.afm.nl/en
https://travis-ci.org/
https://www.tribler.org/about.html
https://github.com/Tribler/tribler/wiki
https://twistedmatrix.com/trac/
https://www.upstart.com/
https://github.com/rubik/xenon

Appendices

32

A
Project description: Open market for

real-estate crowdsourcing

33

34

Market platforms such as AirBnB, eBay, Uber, and Blandlord.com bring supply and demand together. Based
on our ongoing "blockchain-regulated markets" we now explore usage in various domains. This issue ad-
dresses an open market for crowdsourcing in real-estate.[33]

Outcome of initial brainstorm sketches:

Figure A.1: Brainstorm sketches

Sprints:

• Week 1-2: Write-up of context and understanding of problem, understand related initiatives. Describe
at least 10 initiatives. Learn Python.

• Week 3-4: Apply Python. Visualize the concept using PyQT designer with 4 operational screens. Feed-
back round from bank.

• Week 5-6:

• Week 7-8:

Roadmap:

• Feb/Jan: we have 3 components ready in draft: operational market + GUI implemented in QT + busi-
ness case

• till April: define API between market and business logic, create business logic core, integrate the market,
business logic, and GUI.

• April: present MvP results

Various markets for real-estate already exist, such as:

35

Figure A.2: Blandlord is gestart in Rotterdam

Plus an operational crowdsourcing market, running locally which TUDelft indirectly has access to:

36

Figure A.3: Kapitaal op Maat

B
Infosheet

37

38

Crowdsourcing real-estate
Name of the client organization: ABN AMRO
Date of the final presentation: January 31, 2017

Description
For this project we were tasked with creating a scalable decentralized market for crowdfunding mortgages.
Our client is ABN AMRO, who is collaborating with the TU Delft Blockchain Lab on the development of
blockchain applications.

In the research phase we looked at related initiatives to understand more about crowdfunding real-estate
and we had to find out how applying for a mortgage works, as our application involves people who want to
apply for a mortgage. We also had to research dispersy and blockchain as we needed these technologies in
our implementation of the product.

We used the scrum framework to keep the process in check and we tried to finish a new functionality every
sprint. We held daily meetings within our group and weekly meetings with our coach. During the project we
found that the initial scope was too big for this project, so we had to change the project description to fit the
project duration.

The product that we developed for this project is a working decentralized platform that can connect users
with different goals. Users that are in need of funding to buy a house are able to get a mortgage quote from
financial institutions, and they are able to receive investment bids from users that want to invest. Financial
institutions can receive mortgage applications from users that want to buy a house, and partially fund those
users’ mortgages. Users that are looking for an investing opportunity are able to view open crowdfunding
campaigns, and they are able to place investment bids on those campaigns.

The outlook of the product was to create a program that could be reused in future projects. This is because
the problem has been passed down from BEP group to BEP group with each iteration adding something to
the main idea and implementation. It was important for us to make the program so that it could be extended
easily.

Members of the project team
Name Katia Asmoredjo Arthur Hovanesyan
Main contribution API and GUI GUI and document transfer

Name Seu Man To Calvin Wong Loi Sing
Main contribution API and blockchain API, database, and Dispersy

All team members took on the role of developer and contributed to writing the thesis and preparing the final
presentation.

Client Coach
S.E. Hagens Dr. Ir. J.A. Pouwelse
Innovation Center at ABN AMRO Distributed Systems at Delft University of Technology

Contact
Johan Pouwelse, J.A.Pouwelse@tudelft.nl
Katia Asmoredjo, katia.asmoredjo@gmail.com
Arthur Hovanesyan, a.hovanesyan@gmail.com
Seu Man To, seumanto@gmail.com
Calvin Wong Loi Sing, calvin@idea-factory.nl

The final report for this project can be found at: http://repository.tudelft.nl.

http://repository.tudelft.nl

C
Mortgage Process

39

40

41

42

43

44

D
Customer journeys

45

46

Figure D.1: Borrower’s journey flowchart

Figure D.2: Investor’s journey flowchart

47

Figure D.3: Financial institution’s journey flowchart

E
Market API

48

49

50

51

52

53

54

55

56

F
GUI Screens

57

58

59

60

61

62

63

64

65

66

G
SIG feedback

We had to submit our code to SIG twice for a code quality review. Below you can find their feedback.
The code of the system Decentralized Mortgage Marketplace scores 4 stars (3.6 out of 5.5) on our main-

tainability model, which means that the code is maintainable above average (the score ranges between 1 to 5
stars).

Overall, your code scored 5 stars for its small volume, the lack of duplication and its balance of compo-
nents, 4 stars for its simple units and the loosely coupled modules and 3 stars for component independence.
The lowest scores where in unit size and unit interfacing.

Components
Looking at the structure of the project, it looks like you have 4 different components on top level: con-
figuration, test, front end and back end. Diving further on the market folder you have a proper compo-
nentization. The 5 stars you received for the component balance is due to the fact that we considered
these inner components inside market.

Unit Size
For Unit Size we look at the percentage of code that is above average in length. Breaking down such
methods into smaller pieces makes each component easier to understand, test, and is therefore easier
to maintain. In the submitted code there are generated files by pyQt5 that they belong to the longer
methods in the system, such as, the Ui_MainWindow(object). This unit is not hand written code, it
doesn’t need to be maintained and it can be created by the source .ui file. It really affected your score
and you can avoid committing all of them. Another improvement could be to separate big units with
many responsibilities into other reusable units like ProfileController.save_form(self). Comment lines
such as "# Get the data from the forms" and "# Check if the user can switch roles" are a good indication
that the code following fits in an autonomous unit. Therefore, it is advisable to take a critical look at the
longer methods within the system and divide them where possible and avoid committing generated
code.

Unit Interfacing
Unit Interfacing is depended on the percentage of code consists of units with an above-average number
of parameters. An above-average number of parameters usually indicates a lack of abstraction. In
addition, a large number of parameters often leads to confusion in calling the method, and in most
cases also to longer and more complex methods. An example of a unit that needs refactoring is the
SignedConfirmPayload.Implementation.__init__ which has 13 parameters that could be extracted in a
object related (or even named) to beneficiary.

Conclusion
Overall your code scores above average. Hopefully, you can manage to maintain this level for the rest of
the development or even reach the 5 stars.

Finally, the presence of 150 (unit) tests that are uploaded is in any case very promising. Hopefully, the
volume of the test-code will also grow at the time that new functionality will be added.

67

	Introduction
	Problem description
	Problem definition
	Client description
	Required technologies
	Dispersy
	Blockchain

	Project requirements
	Must Have
	Should Have
	Could Have
	Won't Have

	Screens & Workflow
	Related initiatives
	Jungo
	Blandlord
	Greencrowd
	Fundrise
	RealtyShares
	Collin Crowdfund
	Upstart
	CrowdAboutNow
	Kapitaal op Maat
	Geldvoorelkaar
	Bouwsteen
	Gradefix
	MoneYou

	Development process

	The customer journey
	Researching the customer journey
	Defining the customer journey
	The borrower's journey
	The investor's journey
	The financial institution's journey

	Object-oriented analysis and design
	Defining the API
	Database structure
	Visualising the core functionalities

	Let's get connected
	Visualising the market
	Information flow design
	Integrating Dispersy
	Dispersy and Market Identity
	Dispersy message sharing

	Communication protocol specification
	Dispersy Messages
	Market API Messages

	Document Sharing
	Blockchain
	Architecture
	Signed messages and the blockchain
	Blockchain storage model

	Quality assurance
	Unit testing
	Integration testing
	Code quality SIG

	Conclusion and evaluation
	Fulfillment of requirements
	Must Have
	Should Have
	Could Have
	Won't Have

	Challenges
	Known issues and future work
	Conclusion

	Bibliography
	Appendices
	Project description: Open market for real-estate crowdsourcing
	Infosheet
	Mortgage Process
	Customer journeys
	Market API
	GUI Screens
	SIG feedback

