-
Notifications
You must be signed in to change notification settings - Fork 0
/
ner_model.py
354 lines (272 loc) · 13.1 KB
/
ner_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import numpy as np
import os
import tensorflow as tf
from NER.data_utils import minibatches, pad_sequences, get_chunks,score
from NER.general_utils import Progbar
from .base_model import BaseModel
class NERModel(BaseModel):
"""Specialized class of Model for NER"""
def __init__(self, config):
super(NERModel, self).__init__(config)
# self.idx_to_tag = {idx: tag for tag, idx in
# self.config.vocab_tags.items()}
def add_placeholders(self):
"""Define placeholders = entries to computational graph"""
# shape = (batch size, max length of sentence in batch)
self.word_ids = tf.placeholder(tf.int32, shape=[None, None],
name="word_ids")
# shape = (batch size)
self.sequence_lengths = tf.placeholder(tf.int32, shape=[None],
name="sequence_lengths")
# shape = (batch size, max length of sentence, max length of word)
self.char_ids = tf.placeholder(tf.int32, shape=[None, None, None],
name="char_ids")
# shape = (batch_size, max_length of sentence)
self.word_lengths = tf.placeholder(tf.int32, shape=[None, None],
name="word_lengths")
# shape = (batch size, max length of sentence in batch)
self.labels = tf.placeholder(tf.int32, shape=[None, None],
name="labels")
# hyper parameters
self.dropout = tf.placeholder(dtype=tf.float32, shape=[],
name="dropout")
self.lr = tf.placeholder(dtype=tf.float32, shape=[],
name="lr")
def get_feed_dict(self, words, labels=None, lr=None, dropout=None):
"""Given some data, pad it and build a feed dictionary
Args:
words: list of sentences. A sentence is a list of ids of a list of
words. A word is a list of ids
labels: list of ids
lr: (float) learning rate
dropout: (float) keep prob
Returns:
dict {placeholder: value}
"""
# perform padding of the given data
if self.config.use_chars:
char_ids, word_ids = zip(*words)
word_ids, sequence_lengths = pad_sequences(word_ids, 0)
char_ids, word_lengths = pad_sequences(char_ids, pad_tok=0,
nlevels=2)
else:
word_ids, sequence_lengths = pad_sequences( words, 0)
# build feed dictionary
feed = {
self.word_ids: word_ids,
self.sequence_lengths: sequence_lengths
}
if self.config.use_chars:
feed[self.char_ids] = char_ids
feed[self.word_lengths] = word_lengths
if labels is not None:
labels, _ = pad_sequences(labels, 0)
feed[self.labels] = labels
if lr is not None:
feed[self.lr] = lr
if dropout is not None:
feed[self.dropout] = dropout
return feed, sequence_lengths
def add_word_embeddings_op(self):
"""Defines self.word_embeddings
If self.config.embeddings is not None and is a np array initialized
with pre-trained word vectors, the word embeddings is just a look-up
and we don't train the vectors. Otherwise, a random matrix with
the correct shape is initialized.
"""
with tf.variable_scope("words"):
if self.config.embeddings is None:
self.logger.info("WARNING: randomly initializing word vectors")
_word_embeddings = tf.get_variable(
name="_word_embeddings",
dtype=tf.float32,
shape=[self.config.nwords, self.config.dim_word])
else:
_word_embeddings = tf.Variable(
self.config.embeddings,
name="_word_embeddings",
dtype=tf.float32,
trainable=self.config.train_embeddings)
word_embeddings = tf.nn.embedding_lookup(_word_embeddings,
self.word_ids, name="word_embeddings")
with tf.variable_scope("chars"):
if self.config.use_chars:
# get char embeddings matrix
_char_embeddings = tf.get_variable(
name="_char_embeddings",
dtype=tf.float32,
shape=[self.config.nchars, self.config.dim_char])
char_embeddings = tf.nn.embedding_lookup(_char_embeddings,
self.char_ids, name="char_embeddings")
# put the time dimension on axis=1
s = tf.shape(char_embeddings)
char_embeddings = tf.reshape(char_embeddings,
shape=[s[0]*s[1], s[-2], self.config.dim_char])
word_lengths = tf.reshape(self.word_lengths, shape=[s[0]*s[1]])
# bi lstm on chars
cell_fw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_char,
state_is_tuple=True)
cell_bw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_char,
state_is_tuple=True)
_output = tf.nn.bidirectional_dynamic_rnn(
cell_fw, cell_bw, char_embeddings,
sequence_length=word_lengths, dtype=tf.float32)
# read and concat output
_, ((_, output_fw), (_, output_bw)) = _output
output = tf.concat([output_fw, output_bw], axis=-1)
# shape = (batch size, max sentence length, char hidden size)
output = tf.reshape(output,
shape=[s[0], s[1], 2*self.config.hidden_size_char])
word_embeddings = tf.concat([word_embeddings, output], axis=-1)
self.word_embeddings = tf.nn.dropout(word_embeddings, self.dropout)
def add_logits_op(self):
"""Defines self.logits
For each word in each sentence of the batch, it corresponds to a vector
of scores, of dimension equal to the number of tags.
"""
with tf.variable_scope("bi-lstm"):
cell_fw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_lstm)
cell_bw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_lstm)
(output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn(
cell_fw, cell_bw, self.word_embeddings,
sequence_length=self.sequence_lengths, dtype=tf.float32)
# shape = [n_batch,n_seq,hidden_size]
output = tf.concat([output_fw, output_bw], axis=-1) # axis = -1+ rank(input)
output = tf.nn.dropout(output, self.dropout)
with tf.variable_scope("proj"):
W = tf.get_variable("W", dtype=tf.float32,
shape=[2*self.config.hidden_size_lstm, self.config.ntags])
b = tf.get_variable("b", shape=[self.config.ntags],
dtype=tf.float32, initializer=tf.zeros_initializer())
nsteps = tf.shape(output)[1]
output = tf.reshape(output, [-1, 2*self.config.hidden_size_lstm])
pred = tf.matmul(output, W) + b
self.logits = tf.reshape(pred, [-1, nsteps, self.config.ntags])
def add_pred_op(self):
"""Defines self.labels_pred
This op is defined only in the case where we don't use a CRF since in
that case we can make the prediction "in the graph" (thanks to tf
functions in other words). With theCRF, as the inference is coded
in python and not in pure tensroflow, we have to make the prediciton
outside the graph.
"""
if not self.config.use_crf:
self.labels_pred = tf.cast(tf.argmax(self.logits, axis=-1),
tf.int32)
def add_loss_op(self):
"""Defines the loss"""
if self.config.use_crf:
log_likelihood, trans_params = tf.contrib.crf.crf_log_likelihood(
self.logits, self.labels, self.sequence_lengths)
self.trans_params = trans_params # need to evaluate it for decoding
self.loss = tf.reduce_mean(-log_likelihood)
else:
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=self.logits, labels=self.labels)
mask = tf.sequence_mask(self.sequence_lengths)
losses = tf.boolean_mask(losses, mask)
self.loss = tf.reduce_mean(losses)
# for tensorboard
tf.summary.scalar("loss", self.loss)
def build(self):
# NER specific functions
self.add_placeholders()
self.add_word_embeddings_op()
self.add_logits_op()
self.add_pred_op()
self.add_loss_op()
# Generic functions that add training op and initialize session
self.add_train_op(self.config.lr_method, self.lr, self.loss,
self.config.clip)
self.initialize_session() # now self.sess is defined and vars are init
def run_epoch(self, epoch, sents, labels, dev_sents, dev_labels):
"""Performs one complete pass over the train set and evaluate on dev
Args:
train: dataset that yields tuple of sentences, tags
dev: dataset
epoch: (int) index of the current epoch
Returns:
f1: (python float), score to select model on, higher is better
"""
# progbar stuff for logging
batch_size = self.config.batch_size
nbatches = (len(sents) + batch_size - 1) // batch_size
prog = Progbar(target=nbatches)
# iterate over dataset
for i, (words, labels_) in enumerate(minibatches(sents, labels, batch_size)):
fd, _ = self.get_feed_dict(words, labels_, self.config.lr,
self.config.dropout)
_, train_loss= self.sess.run(
[self.train_op, self.loss,], feed_dict=fd)
if(i%19==0):
prog.update(i + 1, [("train loss", train_loss)])
# tensorboard
# if i % 10 == 0:
# self.file_writer.add_summary(summary, epoch*nbatches + i)
metrics = self.run_evaluate(dev_sents,dev_labels)
msg = " - ".join(["{} {:04.2f}".format(k, v)
for k, v in metrics.items()])
self.logger.info(msg)
return metrics["f1"]
def predict_batch(self, words):
"""
Args:
words: list of sentences
Returns:
labels_pred: list of labels for each sentence
sequence_length
"""
fd, sequence_lengths = self.get_feed_dict(words, dropout=1.0)
if self.config.use_crf:
# get tag scores and transition params of CRF
viterbi_sequences = []
logits, trans_params = self.sess.run(
[self.logits, self.trans_params], feed_dict=fd)
# iterate over the sentences because no batching in vitervi_decode
for logit, sequence_length in zip(logits, sequence_lengths):
logit = logit[:sequence_length] # keep only the valid steps
viterbi_seq, viterbi_score = tf.contrib.crf.viterbi_decode(
logit, trans_params)
viterbi_sequences += [viterbi_seq]
return viterbi_sequences, sequence_lengths
else:
labels_pred = self.sess.run(self.labels_pred, feed_dict=fd)
return labels_pred, sequence_lengths
def run_evaluate(self, test_sents, test_labels):
"""Evaluates performance on test set
Args:
test: dataset that yields tuple of (sentences, tags)
Returns:
metrics: (dict) metrics["acc"] = 98.4, ...
"""
accs = []
correct_preds, total_correct, total_preds = 0., 0., 0.
for words, labels in minibatches(test_sents,test_labels, self.config.batch_size):
labels_pred, sequence_lengths = self.predict_batch(words)
for lab, lab_pred, length in zip(labels, labels_pred,
sequence_lengths):
lab = lab[:length]
lab_pred = lab_pred[:length]
num_pred, num_correct, num_total = score(lab,lab_pred)
correct_preds += num_correct
total_correct += num_total
total_preds +=num_pred
accs += [a == b for (a, b) in zip(lab, lab_pred) if a!=0]
p = correct_preds / total_preds if correct_preds > 0 else 0
r = correct_preds / total_correct if correct_preds > 0 else 0
f1 = 2 * p * r / (p + r) if correct_preds > 0 else 0
acc = np.mean(accs)
return {"acc": 100*acc, "f1": 100*f1}
def predict(self, words_raw):
"""Returns list of tags
Args:
words_raw: list of words (string), just one sentence (no batch)
Returns:
preds: list of tags (string), one for each word in the sentence
"""
words = [self.config.vocab_words.get(w,0) for w in words_raw]
if type(words[0]) == tuple:
words = zip(*words)
pred_ids, _ = self.predict_batch([words])
preds = [self.config.idx2Tag[idx] for idx in list(pred_ids[0])]
return preds