-
Notifications
You must be signed in to change notification settings - Fork 0
/
CRFs_vn_(.86).py
257 lines (221 loc) · 7.68 KB
/
CRFs_vn_(.86).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import pandas as pd
import pycrfsuite
import numpy as np
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import LabelBinarizer
from itertools import chain
import re
# Uses pandas
# data = pd.read_csv('D:\\Machine_learning\\NLP\\ner_data.txt', sep='\t', header=None, names=['word', 'NE'])
# word = data['word'].values.tolist()
# # print('check: ',word[138510])
# NE = data['NE'].values.tolist()
# replace '_' in words, separate word
def separate_word(word, NE):
i = 0
while not (i == (len(word)-1)):
if '_' in word[i]:
listword = word[i].split('_')
# print('listword: ',listword)
listTag = []
choseTag = {'B-PER':'I-PER','B-LOC':'I-LOC','B-ORG':'I-ORG','B-PRO':'I-PRO'}
Tag = choseTag.get(NE[i],'O')
for idx in range(0,len(listword)):
if idx ==0:
listTag.append(NE[i])
else:
listTag.append(Tag)
# print(listTag)
NE.pop(i)
word.pop(i)
word[i:i] = listword
NE[i:i] = listTag
i += len(listTag)
continue
i +=1
return (word,NE)
# (word,NE) = separateword(word,NE)
# print(word[:100])
# print(NE[:50])
# train_data = [(Word,Ne) for Word,Ne in zip(word, NE)]
data2 = []
with open('D:\\Machine_learning\\NLP\\ner_data.txt',encoding='utf-8') as file:
line = file.read().split('\n')
# temp = [l.split('\t') for l in line]
# for i in range(0,len(temp)):
# data2.append(tuple(temp[i]))
data2 = [tuple(l.split('\t'))for l in line]
train_data = data2
print(type(data2))
# print(data2[:60])
sent = []
train_sents = []
# separate sentence
for word_tag in train_data:
if(word_tag[0] ==''):
continue
if word_tag[0] == '.':
train_sents.append(sent)
sent = []
continue
sent.append(word_tag)
# print(train_sents[:2])
print('total: ',len(train_sents))
print('--Extract feature \n')
def word2feature(sent, i):
word = sent[i][0]
#print(sent[i],'\n')
Tag = sent[i][1]
features = [
'bias',
'word.lower='+word.lower(),
'word[-3:]='+word[-3:],
'word[-2:]='+word[-2:],
'word.isupper=%s'%word.isupper(),
'word.istitle=%s' % word.istitle(),
'word.isdigit=%s' % word.isdigit(),
'word.hashyphen=%s' % word.find('-'),
# 'tag=' + Tag,
# 'tag[:2]=' + Tag[:2],
]
if i > 0:
word1 = sent[i - 1][0]
Tag1 = sent[i - 1][1]
features.extend([
'-1:word.lower=' + word1.lower(),
'-1:word.istitle=%s' % word1.istitle(),
'-1:word.isupper=%s' % word1.isupper(),
# '-1:tag=' + Tag1,
# '-1:tag[:2]=' + Tag1[:2],
])
else:
features.append('BOS')
if i < len(sent)-1:
word1 = sent[i+1][0]
Tag1 = sent[i+1][1]
# print(word1,'_',Tag1)
features.extend([
'+1:word.lower=' + word1.lower(),
'+1:word.istitle=%s' % word1.istitle(),
'+1:word.isupper=%s' % word1.isupper(),
# '+1:tag=' + Tag1,
# '+1:tag[:2]=' + Tag1[:2],
])
else:
features.append('EOS')
return features
def sent2feature(sent):
return [word2feature(sent, i) for i in range(len(sent))]
def sent2labels(sent):
return [label for token, label in sent]
def sent2tokens(sent):
return [token for token, label in sent]
def getdataset(data, num, random_list):
data_set = []
if num > 0:
data_set = [data[i] for i in random_list[:num]]
else:
if num < 0:
data_set = [data[i] for i in random_list[num:]]
else:
data_set = [data[i] for i in random_list[0]]
return data_set
randomList = np.random.permutation(len(train_sents))
x_set1 = [sent2feature(s) for s in train_sents[:2000]]
y_set1 = [sent2labels(s) for s in train_sents[:2000]]
x_set2 = [sent2feature(s) for s in train_sents[2000:4000]]
y_set2 = [sent2labels(s) for s in train_sents[2000:4000]]
x_set3 = [sent2feature(s) for s in train_sents[4000:7000]]
y_set3 = [sent2labels(s) for s in train_sents[4000:7000]]
x_set4 = [sent2feature(s) for s in train_sents[7000:9000]]
y_set4 = [sent2labels(s) for s in train_sents[7000:9000]]
x_set5 = [sent2feature(s) for s in train_sents[9000:]]
y_set5 = [sent2labels(s) for s in train_sents[9000:]]
x_append = []
x_append.append(x_set1)
x_append.append(x_set2)
x_append.append(x_set3)
x_append.append(x_set4)
x_append.append(x_set5)
y_append = []
y_append.append(y_set1)
y_append.append(y_set2)
y_append.append(y_set3)
y_append.append(y_set4)
y_append.append(y_set5)
# print('xtrain: ',X_train[0])
# print('xtest: ',X_test[0])
'''---Evaluate the model---'''
def bio_classification_report(y_true, y_pred):
"""
Classification report for a list of BIO-encoded sequences.
It computes token-level metrics and discards "O" labels.
Note that it requires scikit-learn 0.15+ (or a version from github master)
to calculate averages properly!
"""
lb = LabelBinarizer()
y_true_combined = lb.fit_transform(list(chain.from_iterable(y_true)))
# print('u_true_combined; \n',y_true)
# print(len(y_true))
y_pred_combined = lb.transform(list(chain.from_iterable(y_pred)))
# print('y_pre',y_pred)
tagset = set(lb.classes_)-{'O'}-{'B-PRO'}-{'I-PRO'}
tagset = sorted(tagset, key=lambda tag: tag.split('-', 1)[::-1])
class_indices = {cls: idx for idx, cls in enumerate(lb.classes_)}
# print(type(lb))
# print('label: \n',lb)
# print('tagset: \n',tagset)
# print('lb.class: \n',lb.classes_)
# print('class_indice: \n',class_indices)
return classification_report(
y_true_combined,
y_pred_combined,
labels=[class_indices[cls] for cls in tagset],
target_names=tagset,
)
X_train = []
y_train = []
X_test = []
y_test = []
for i in range(5):
for k in range(5):
if(k!=i):
X_train.extend(x_append[k])
y_train.extend(y_append[k])
else:
X_test.extend(x_append[i])
y_test.extend(y_append[i])
# print(X_train)
print('number of train data %d: '%i,len(X_train))
print('number of test data %d: '%i,len(X_test))
'''---Train the model---'''
trainer = pycrfsuite.Trainer(verbose=False)
for xseq, yseq in zip(X_train, y_train):
trainer.append(xseq, yseq)
# use L-BFGS traing Algorithm(default) with Elastic Net regularization
# set parameter
trainer.set_params({
'c1': 1., #coefficient for L1 penalty
'c2': 1e-3,# for L2
'max_iterations': 50, # stop earlier
'feature.possible_transitions': True
})
# print(trainer.params())
trainer.train('vn_test.crfsuite')
# print(trainer.logparser.last_iteration)
'''---Prediction---'''
tagger = pycrfsuite.Tagger()
tagger.open('vn_test.crfsuite')
example_ = train_sents[-3:]
# print('1', example_[0])
# example_ = [('xin', 'O'), ('cấp', 'O'), ('Giấy', 'O'), ('Chứng_Nhận', 'O'), ('tại', 'O'), ('UBND', 'B-ORG'),
# ('thành_phố', 'I-ORG')]
# print(' '.join(sent2tokens(example_)), '\n')
# print('Predict: \n', tagger.tag(sent2feature(example_)))
# print('Correct: \n', sent2labels(example_))
y_pred = [tagger.tag(xseq) for xseq in X_test]
print(bio_classification_report(y_test,y_pred))
X_train.clear()
X_test.clear()
y_train.clear()
y_test.clear()