-
Notifications
You must be signed in to change notification settings - Fork 0
/
PracModel.py
28 lines (19 loc) · 878 Bytes
/
PracModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
data = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = data.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images = train_images/255.0
test_images = test_images/255.0
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28,28)),
keras.layers.Dense(128, activation = "relu"),
keras.layers.Dense(10, activation = "softmax")
])
model.compile(optimizer = "adam", loss = "sparse_categorical_crossentropy", metrics = ["accuracy"])
model.fit(train_images, train_labels, epochs=5)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print("Tested Acc:",test_acc)