We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
依存关系主要使用句法分析器完成,句法分析器也有基于规则的和基于机器学习训练的。 虽然实现方案不同,但是二者的模型输出的是同样一个规范: https://nlp.stanford.edu/software/lex-parser.shtml
目前,state of art的可以参考 http://nlp.qq.com/semantic.cgi 句法类API
https://my.oschina.net/dingdayu/blog/1083438
dsindex/syntaxnet#24
https://www.jianshu.com/p/479a111ed5f4
http://www.hankcs.com/nlp/to-achieve-a-simple-generative-dependency-parsing.html
http://www.hankcs.com/nlp/parsing/neural-network-based-dependency-parser.html
论文分析 https://www.zhihu.com/question/46272554 https://arxiv.org/pdf/1603.06042v1.pdf
https://gist.github.com/Samurais/2c935182fb7213205284f7cd5040536a https://github.com/Xe0n0/python-dependency-parser
http://demo.clab.cs.cmu.edu/fa2015-11711/images/b/b1/TbparsingSmallCorrection.pdf https://www.youtube.com/results?search_query=Greedy+Transition-Based+Parsing
https://jiaxuncai.github.io/2016/10/30/%E4%BE%9D%E5%AD%98%E5%8F%A5%E6%B3%95%E5%88%86%E6%9E%90%E8%AF%84%E4%BB%B7%E6%8C%87%E6%A0%87/
http://www.hankcs.com/nlp/parsing/crf-sequence-annotation-chinese-dependency-parser-implementation-based-on-java.html
http://universaldependencies.org/
http://www.hankcs.com/nlp/corpus/chinese-treebank.html#h3-6
https://github.com/tensorflow/models/blob/master/research/syntaxnet/g3doc/syntaxnet-tutorial.md
https://github.com/taolei87/RBGParser/wiki/Data-Format
There is now a CoNLL-U data format as well which extends the CoNLL-X format.
http://www.phontron.com/class/nn4nlp2018/schedule/transition-parsing.html https://www.youtube.com/watch?v=7rp2c7JVymE
This lecture (by Graham Neubig) for CMU CS 11-747, Neural Networks for NLP (Fall 2017) covers:
Slides: http://www.phontron.com/class/nn4nlp2018/schedule/transition-parsing.html Code Examples: https://github.com/neubig/nn4nlp-code
Previous Video: https://youtu.be/e5sPNlgbZAE Next Video: https://youtu.be/gRtEW6Q5XJE
See more details of the class here: http://phontron.com/class/nn4nlp2017/
The text was updated successfully, but these errors were encountered:
https://wenku.baidu.com/view/b50dbedfe2bd960591c677d1.html
Sorry, something went wrong.
No branches or pull requests
介绍句法分析
依存关系主要使用句法分析器完成,句法分析器也有基于规则的和基于机器学习训练的。
虽然实现方案不同,但是二者的模型输出的是同样一个规范:
https://nlp.stanford.edu/software/lex-parser.shtml
目前,state of art的可以参考 http://nlp.qq.com/semantic.cgi
句法类API
Google SyntaxNet
SyntaxNet 中文模型的使用
https://my.oschina.net/dingdayu/blog/1083438
How to train Chinese corpus after downloading the universal-dependencies-2.0 ?
dsindex/syntaxnet#24
Google自然语言理解工具syntaxnet开放中文支持
https://www.jianshu.com/p/479a111ed5f4
HanLP
生成式依存句法分析器的简单实现
http://www.hankcs.com/nlp/to-achieve-a-simple-generative-dependency-parsing.html
基于神经网络的高性能依存句法分析器
http://www.hankcs.com/nlp/parsing/neural-network-based-dependency-parser.html
dependency parsing
论文分析 https://www.zhihu.com/question/46272554
https://arxiv.org/pdf/1603.06042v1.pdf
开源项目
https://gist.github.com/Samurais/2c935182fb7213205284f7cd5040536a
https://github.com/Xe0n0/python-dependency-parser
Greedy Transition-Based Parsing
http://demo.clab.cs.cmu.edu/fa2015-11711/images/b/b1/TbparsingSmallCorrection.pdf
https://www.youtube.com/results?search_query=Greedy+Transition-Based+Parsing
依存句法分析评价指标
https://jiaxuncai.github.io/2016/10/30/%E4%BE%9D%E5%AD%98%E5%8F%A5%E6%B3%95%E5%88%86%E6%9E%90%E8%AF%84%E4%BB%B7%E6%8C%87%E6%A0%87/
基于CRF序列标注的中文依存句法分析器的Java实现
http://www.hankcs.com/nlp/parsing/crf-sequence-annotation-chinese-dependency-parser-implementation-based-on-java.html
用于训练的数据集
universaldependencies
http://universaldependencies.org/
采用清华大学语义依存网络语料的20000句作为训练集。
http://www.hankcs.com/nlp/corpus/chinese-treebank.html#h3-6
http://www.hankcs.com/nlp/corpus/chinese-treebank.html
SyntaxNet Tutorial
https://github.com/tensorflow/models/blob/master/research/syntaxnet/g3doc/syntaxnet-tutorial.md
Conllu Data Format
https://github.com/taolei87/RBGParser/wiki/Data-Format
There is now a CoNLL-U data format as well which extends the CoNLL-X format.
CMU Neural Nets for NLP 2017 (12): Transition-based Dependency Parsing
http://www.phontron.com/class/nn4nlp2018/schedule/transition-parsing.html
https://www.youtube.com/watch?v=7rp2c7JVymE
This lecture (by Graham Neubig) for CMU CS 11-747, Neural Networks for NLP (Fall 2017) covers:
Slides: http://www.phontron.com/class/nn4nlp2018/schedule/transition-parsing.html
Code Examples: https://github.com/neubig/nn4nlp-code
Previous Video: https://youtu.be/e5sPNlgbZAE
Next Video: https://youtu.be/gRtEW6Q5XJE
See more details of the class here: http://phontron.com/class/nn4nlp2017/
The text was updated successfully, but these errors were encountered: