Skip to content

Latest commit

 

History

History
145 lines (97 loc) · 4.22 KB

README.rst

File metadata and controls

145 lines (97 loc) · 4.22 KB

libcamera

A complex camera support library for Linux, Android, and ChromeOS

Cameras are complex devices that need heavy hardware image processing operations. Control of the processing is based on advanced algorithms that must run on a programmable processor. This has traditionally been implemented in a dedicated MCU in the camera, but in embedded devices algorithms have been moved to the main CPU to save cost. Blurring the boundary between camera devices and Linux often left the user with no other option than a vendor-specific closed-source solution.

To address this problem the Linux media community has very recently started collaboration with the industry to develop a camera stack that will be open-source-friendly while still protecting vendor core IP. libcamera was born out of that collaboration and will offer modern camera support to Linux-based systems, including traditional Linux distributions, ChromeOS and Android.

Getting Started

To fetch the sources, build and install:

git clone git://linuxtv.org/libcamera.git
cd libcamera
meson build
ninja -C build install

Dependencies

The following Debian/Ubuntu packages are required for building libcamera. Other distributions may have differing package names:

A C++ toolchain: [required]
Either {g++, clang}
Meson Build system: [required]

meson (>= 0.55) ninja-build pkg-config

If your distribution doesn't provide a recent enough version of meson, you can install or upgrade it using pip3.

pip3 install --user meson
pip3 install --user --upgrade meson
for the libcamera core: [required]
python3-yaml python3-ply python3-jinja2
for IPA module signing: [required]
libgnutls28-dev openssl
for the Raspberry Pi IPA: [optional]

libboost-dev

Support for Raspberry Pi can be disabled through the meson
'pipelines' option to avoid this dependency.
for device hotplug enumeration: [optional]
libudev-dev
for documentation: [optional]
python3-sphinx doxygen graphviz
for gstreamer: [optional]
libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
for cam: [optional]
libevent-dev
for qcam: [optional]
qtbase5-dev libqt5core5a libqt5gui5 libqt5widgets5 qttools5-dev-tools libtiff-dev
for tracing with lttng: [optional]
liblttng-ust-dev python3-jinja2 lttng-tools
for android: [optional]
libexif-dev libjpeg-dev libyaml-dev

Using GStreamer plugin

To use GStreamer plugin from source tree, set the following environment so that GStreamer can find it. This isn't necessary when libcamera is installed.

export GST_PLUGIN_PATH=$(pwd)/build/src/gstreamer

The debugging tool gst-launch-1.0 can be used to construct a pipeline and test it. The following pipeline will stream from the camera named "Camera 1" onto the OpenGL accelerated display element on your system.

gst-launch-1.0 libcamerasrc camera-name="Camera 1" ! glimagesink

To show the first camera found you can omit the camera-name property, or you can list the cameras and their capabilities using:

gst-device-monitor-1.0 Video

This will also show the supported stream sizes which can be manually selected if desired with a pipeline such as:

gst-launch-1.0 libcamerasrc ! 'video/x-raw,width=1280,height=720' ! \
      glimagesink

Troubleshooting

Several users have reported issues with meson installation, crux of the issue is a potential version mismatch between the version that root uses, and the version that the normal user uses. On calling ninja -C build, it can't find the build.ninja module. This is a snippet of the error message.

ninja: Entering directory `build'
ninja: error: loading 'build.ninja': No such file or directory

This can be solved in two ways:

  1. Don't install meson again if it is already installed system-wide.

2) If a version of meson which is different from the system-wide version is already installed, uninstall that meson using pip3, and install again without the --user argument.