-
Notifications
You must be signed in to change notification settings - Fork 145
/
trirank_example.py
53 lines (45 loc) · 1.67 KB
/
trirank_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""TriRank: Review-aware Explainable Recommendation by Modeling Aspects"""
import cornac
from cornac.datasets import amazon_toy
from cornac.data import SentimentModality
from cornac.eval_methods import RatioSplit
# Load rating and sentiment information
rating = amazon_toy.load_feedback()
sentiment = amazon_toy.load_sentiment()
# Instantiate a SentimentModality, it makes it convenient to work with sentiment information
md = SentimentModality(data=sentiment)
# Define an evaluation method to split feedback into train and test sets
eval_method = RatioSplit(
data=rating,
test_size=0.15,
exclude_unknowns=True,
verbose=True,
sentiment=md,
seed=123,
)
# Instantiate the model
trirank = cornac.models.TriRank(
verbose=True,
seed=123,
)
# Instantiate evaluation metrics
ndcg_50 = cornac.metrics.NDCG(k=50)
auc = cornac.metrics.AUC()
# Put everything together into an experiment and run it
cornac.Experiment(
eval_method=eval_method, models=[trirank], metrics=[ndcg_50, auc]
).run()