-
Notifications
You must be signed in to change notification settings - Fork 145
/
spop_yoochoose.py
52 lines (46 loc) · 1.51 KB
/
spop_yoochoose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Copyright 2023 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example of a next-item recommendation model based on item popularity"""
import cornac
from cornac.datasets import yoochoose
from cornac.eval_methods import NextItemEvaluation
from cornac.metrics import MRR, NDCG, Recall
from cornac.models import SPop
buy_data = yoochoose.load_buy()
print("buy data loaded")
test_data = yoochoose.load_test()
print("test data loaded")
next_item_eval = NextItemEvaluation.from_splits(
train_data=buy_data,
test_data=test_data[:10000], # illustration purpose only, subset of test data for faster experiment
verbose=True,
fmt="SITJson",
)
models = [
SPop(name="Pop", use_session_popularity=False),
SPop(),
]
metrics = [
NDCG(k=10),
NDCG(k=50),
Recall(k=10),
Recall(k=50),
MRR(),
]
cornac.Experiment(
eval_method=next_item_eval,
models=models,
metrics=metrics,
).run()