-
Notifications
You must be signed in to change notification settings - Fork 145
/
gru4rec_yoochoose.py
69 lines (63 loc) · 1.98 KB
/
gru4rec_yoochoose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright 2023 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example of Session-based Recommendations with Recurrent Neural Networks with Yoochoose data"""
import cornac
from cornac.data import Reader
from cornac.datasets import yoochoose
from cornac.eval_methods import NextItemEvaluation
from cornac.metrics import MRR, NDCG, Recall
from cornac.models import GRU4Rec, SPop
buy_data = yoochoose.load_buy(
reader=Reader(min_sequence_size=2, num_top_freq_item=30000)
)
print("train data loaded")
item_set = set([tup[1] for tup in buy_data])
test_data = yoochoose.load_test(reader=Reader(min_sequence_size=2, item_set=item_set))
print("test data loaded")
next_item_eval = NextItemEvaluation.from_splits(
train_data=buy_data,
test_data=test_data[:10000], # illustration purpose only, subset of test data for faster experiment
exclude_unknowns=True,
verbose=True,
fmt="SITJson",
)
models = [
SPop(),
GRU4Rec(
layers=[100],
loss="bpr-max",
n_sample=2048,
dropout_p_embed=0.0,
dropout_p_hidden=0.5,
sample_alpha=0.75,
batch_size=512,
n_epochs=10,
device="cuda",
verbose=True,
seed=123,
)
]
metrics = [
NDCG(k=10),
NDCG(k=50),
Recall(k=10),
Recall(k=50),
MRR(),
]
cornac.Experiment(
eval_method=next_item_eval,
models=models,
metrics=metrics,
).run()