

Copyright © 2019 Skymizer Taiwan Inc. All rights reserved

Application Note 002
Pass Manager Getting Started Guide

ONNC Pass Manager Getting Started Guide

Copyright © 2019 Skymizer Taiwan Inc. All rights reserved.

1 Application notes 002

This application note describes the pass manager software architecture and
basics to implement a pass in ONNC. This note also provides a concrete pass
example in ONNC which counts neural network operators in an ONNX model for
reference. This document is compliant with the ONNC Community Docker image
v1.0. You may download the Docker image from Docker Hub1

1 https://hub.docker.com/r/onnc/onnc-community

ONNC Pass Manager Getting Started Guide

Copyright © 2019 Skymizer Taiwan Inc. All rights reserved.

2 Application notes 002

TABLE OF CONTENT

1. Introduction 3

2. Pass 3

2.1. Inheriting from the CustomPass<T> Abstract Class 3

2.2. Overriding runOnModule() 4

2.3. Defining Pass Dependency 4

3. Pass Manager 5

3.1. Registering a Pass 5

ONNC Pass Manager Getting Started Guide

Copyright © 2019 Skymizer Taiwan Inc. All rights reserved.

3 Application notes 002

1. Introduction
ONNC inherits the concept of pass management from the LLVM infrastructure and

the pass manager is one of the most important features in ONNC as well. Any analysis
or transformation on a target program can be implemented as a pass in the ONNC
framework. The design philosophy behind the ONNC pass manager is not only to support
the concept of pass management from LLVM but also to enable automatic iterative
compilation in ONNC. The LLVM pass manager stops immediately when something fails
at any pass. It relies on users to adjust parameters and retry. However, compilation
failures occur much more frequently in the neural network model compilation than in
the traditional (e.g. C/C++) compilation. Therefore, it is an important feature for ONNC
to support iterative compilation and embed the design in the pass manager.

The ONNC framework takes care of most functionalities of the pass manager
including automatic pass scheduling and inter-pass dependencies. In this application
note, we focus on the pass implementation more than the pass manager internals since
most ONNC users spend their efforts in designing a new pass other than modifying the
pass manager.

2. Pass

Pass is an abstraction of each execution in ONNC framework. It is designed for
manipulating an ONNC IR graph to achieve a specific goal. Users may define customized
pass types, register a pass into pass manager, and let pass manager administrate the
executions.

2.1 Inheriting from the CustomPass<T> abstract class

The CustomPass<T> abstract class defines several virtual functions. These member
functions are invoked by the pass manager on each execution.

Prototype

virtual ReturnType doInitialization(Module&);

virtual ReturnType runOnModule(Module&) = 0;

virtual ReturnType doFinalization(Module&);

Method Description

doInitialization
The first-invoked method in a pass. Acquire resources such as
files, network and etc.

runOnModule Implement module manipulations in this method.

doFinalization
The last-called method in a pass. Release resources and prepare
next run.

ONNC Pass Manager Getting Started Guide

Copyright © 2019 Skymizer Taiwan Inc. All rights reserved.

4 Application notes 002

 The above three methods are invoked exactly once per run. Users can assemble
meaningful values and return informative result to pass manager. ONNC use an
enumeration type PassResult to distinguish execution results. PassResult is usually
encoded as bit mask and the following table lists all possible values.

Value Description
kModuleNoChanged No update to the module content or do nothing.
kModuleChanged There are some modifications on module or invoke successfully.
kPassRetry Cannot finish invocation due to some reason. Need to retry.
kPassFailure Failed to action.

2.2 Overriding runOnModule()

CustomPass<T> has a default dolnitialization() funtion doing nothing and doFinalization()
returning kModuleNoChanged. Users can write their own passes by simply deriving from
CustomPass<T> and override the runOnModule() virtual function.

class MyPass : public CustomPass<MyPass> {
public:
 ReturnType runOnModule(Module& module) override {
 // do something here
 return kModuleChanged;
 }
};

 The type argument in CustomPass<T> has to be the same as the derived class name.

2.3 Defining Pass Dependency

If a customized pass needs output generated by other pass, users have to override
the method getAnalysisUsage() to pass the pass dependency information to the pass
manager.

Prototype

virtual void getAnalysisUsage(AnalysisUsage&) const;

 The AnalysisUsage object contains the analysis usage information of a pass. Users
need to call its addRequired() function to define pass dependency. The following code
snippet shows an example where MyPass depends on the other two passes, Foo and Bar.
Once the pass manager is aware of the dependency, it will execute Foo and Bar before
MyPass.

ONNC Pass Manager Getting Started Guide

Copyright © 2019 Skymizer Taiwan Inc. All rights reserved.

5 Application notes 002

class Foo: public CustomPass<Foo> { /* implementation goes here */ };

class Bar: public CustomPass<Bar> { /* implementation goes here */ };

class MyPass : public CustomPass<MyPass> {

public:

 /* other code here */

 void getAnalysisUsage(AnalysisUsage& usage) const override {

 usage.addRequired<Foo>();

 usage.addRequired<Bar>();

 }

};

3. Pass Manager

Pass manager is designed to manage pass instances and pass executions. ONNC
provides simple APIs for users to register passes, their dependencies, and
administrate pass execution. From users' point of view, the implementation details
of the pass manager are handled by the ONNC framework. In most cases, users only
need to focus on how to register a pass to the pass manager.

3.1 Registering a Pass

Users have to register a pass object via the method add() in the pass manager
before they can be executed. There is only one registered pass object running at
same time. The add() prototype is shown as below.

Prototype
void add(Pass*);

 The following example shows how a pass object is registered to the pass
manager.

PassManager manager;
manager.add(new MyPass);

Pass manager gets pass dependency via the getAnalysisUsage() method, create and
run unregistered pass objects if users declare such dependency in their customized pass
type. Note that conditional dependency is not supported in the ONNC framework

ONNC Pass Manager Getting Started Guide

Copyright © 2019 Skymizer Taiwan Inc. All rights reserved.

6 Application notes 002

because the output of the getAnalysisUsage() method has to remain the same throughout
the compilation process.

