forked from Ermentrout/xppaut
-
Notifications
You must be signed in to change notification settings - Fork 1
/
cvdense.c
executable file
·372 lines (280 loc) · 11.2 KB
/
cvdense.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/******************************************************************
* *
* File : cvdense.c *
* Programmers : Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
* Last Modified : 1 September 1994 *
*----------------------------------------------------------------*
* This is the implementation file for the CVODE dense linear *
* solver, CVDENSE. *
* *
******************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "cvdense.h"
#include "cvode.h"
#include "dense.h"
#include "llnltyps.h"
#include "vector.h"
#include "llnlmath.h"
/* Error Messages */
#define CVDENSE_INIT "CVDenseInit-- "
#define MSG_MEM_FAIL CVDENSE_INIT "A memory request failed.\n\n"
/* Other Constants */
#define MIN_INC_MULT RCONST(1000.0)
#define ZERO RCONST(0.0)
#define ONE RCONST(1.0)
#define TWO RCONST(2.0)
/******************************************************************
* *
* Types : CVDenseMemRec, CVDenseMem *
*----------------------------------------------------------------*
* The type CVDenseMem is pointer to a CVDenseMemRec. This *
* structure contains CVDense solver-specific data. *
* *
******************************************************************/
typedef struct {
CVDenseJacFn d_jac; /* jac = Jacobian routine to be called */
DenseMat d_M; /* M = I - gamma J, gamma = h / l1 */
integer *d_pivots; /* pivots = pivot array for PM = LU */
DenseMat d_savedJ; /* savedJ = old Jacobian */
int d_nstlj; /* nstlj = nst at last Jacobian eval. */
int d_nje; /* nje = no. of calls to jac */
void *d_J_data; /* J_data is passed to jac */
} CVDenseMemRec, *CVDenseMem;
/* CVDENSE linit, lsetup, lsolve, and lfree routines */
static int CVDenseInit(CVodeMem cv_mem, bool *setupNonNull);
static int CVDenseSetup(CVodeMem cv_mem, int convfail, N_Vector ypred,
N_Vector fpred, bool *jcurPtr, N_Vector vtemp1,
N_Vector vtemp2, N_Vector vtemp3);
static int CVDenseSolve(CVodeMem cv_mem, N_Vector b, N_Vector ycur,
N_Vector fcur);
static void CVDenseFree(CVodeMem cv_mem);
/*************** CVDenseDQJac ****************************************
This routine generates a dense difference quotient approximation to
the Jacobian of f(t,y). It assumes that a dense matrix of type
DenseMat is stored column-wise, and that elements within each column
are contiguous. The address of the jth column of J is obtained via
the macro DENSE_COL and an N_Vector with the jth column as the
component array is created using N_VMAKE and N_VDATA. Finally, the
actual computation of the jth column of the Jacobian is done with a
call to N_VLinearSum.
**********************************************************************/
void CVDenseDQJac(integer N, DenseMat J, RhsFn f, void *f_data, real tn,
N_Vector y, N_Vector fy, N_Vector ewt, real h, real uround,
void *jac_data, int *nfePtr, N_Vector vtemp1,
N_Vector vtemp2, N_Vector vtemp3)
{
real fnorm, minInc, inc, inc_inv, yjsaved, srur;
real *y_data, *ewt_data;
N_Vector ftemp, jthCol;
integer j;
ftemp = vtemp1; /* Rename work vector for use as f vector value */
/* Obtain pointers to the data for ewt, y */
ewt_data = N_VDATA(ewt);
y_data = N_VDATA(y);
/* Set minimum increment based on uround and norm of f */
srur = RSqrt(uround);
fnorm = N_VWrmsNorm(fy, ewt);
minInc = (fnorm != ZERO) ?
(MIN_INC_MULT * ABS(h) * uround * N * fnorm) : ONE;
N_VMAKE(jthCol, NULL, N);
/* this is the only for loop for 0..N-1 in CVODE */
for (j=0; j < N; j++) {
/* Generate the jth col of J(tn,y) */
N_VDATA(jthCol) = DENSE_COL(J,j);
yjsaved = y_data[j];
inc = MAX(srur*ABS(yjsaved), minInc/ewt_data[j]);
y_data[j] += inc;
f(N, tn, y, ftemp, f_data);
inc_inv = ONE/inc;
N_VLinearSum(inc_inv, ftemp, -inc_inv, fy, jthCol);
y_data[j] = yjsaved;
}
N_VDISPOSE(jthCol);
/* Increment counter nfe = *nfePtr */
*nfePtr += N;
}
/* Readability Replacements */
#define N (cv_mem->cv_N)
#define lmm (cv_mem->cv_lmm)
#define f (cv_mem->cv_f)
#define f_data (cv_mem->cv_f_data)
#define uround (cv_mem->cv_uround)
#define nst (cv_mem->cv_nst)
#define tn (cv_mem->cv_tn)
#define h (cv_mem->cv_h)
#define gamma (cv_mem->cv_gamma)
#define gammap (cv_mem->cv_gammap)
#define gamrat (cv_mem->cv_gamrat)
#define ewt (cv_mem->cv_ewt)
#define nfe (cv_mem->cv_nfe)
#define errfp (cv_mem->cv_errfp)
#define iopt (cv_mem->cv_iopt)
#define linit (cv_mem->cv_linit)
#define lsetup (cv_mem->cv_lsetup)
#define lsolve (cv_mem->cv_lsolve)
#define lfree (cv_mem->cv_lfree)
#define lmem (cv_mem->cv_lmem)
#define jac (cvdense_mem->d_jac)
#define M (cvdense_mem->d_M)
#define pivots (cvdense_mem->d_pivots)
#define savedJ (cvdense_mem->d_savedJ)
#define nstlj (cvdense_mem->d_nstlj)
#define nje (cvdense_mem->d_nje)
#define J_data (cvdense_mem->d_J_data)
/*************** CVDense *********************************************
This routine initializes the memory record and sets various function
fields specific to the dense linear solver module. CVDense sets the
cv_linit, cv_lsetup, cv_lsolve, and cv_lfree fields in (*cvode_mem)
to be CVDenseInit, CVDenseSetup, CVDenseSolve, and CVDenseFree,
respectively. It allocates memory for a structure of type
CVDenseMemRec and sets the cv_lmem field in (*cvode_mem) to the
address of this structure. Finally, it sets d_J_data field in the
CVDenseMemRec structure to be the input parameter jac_data and the
d_jac field to be:
(1) the input parameter djac if djac != NULL or
(2) CVDenseDQJac if djac == NULL.
**********************************************************************/
void CVDense(void *cvode_mem, CVDenseJacFn djac, void *jac_data)
{
CVodeMem cv_mem;
CVDenseMem cvdense_mem;
/* Return immediately if cvode_mem is NULL */
cv_mem = (CVodeMem) cvode_mem;
if (cv_mem == NULL) return; /* CVode reports this error */
/* Set four main function fields in cv_mem */
linit = CVDenseInit;
lsetup = CVDenseSetup;
lsolve = CVDenseSolve;
lfree = CVDenseFree;
/* Get memory for CVDenseMemRec */
lmem = cvdense_mem = (CVDenseMem) malloc(sizeof(CVDenseMemRec));
if (cvdense_mem == NULL) return; /* CVDenseInit reports this error */
/* Set Jacobian routine field to user's djac or CVDenseDQJac */
if (djac == NULL) {
jac = CVDenseDQJac;
} else {
jac = djac;
}
J_data = jac_data;
}
/*************** CVDenseInit *****************************************
This routine initializes remaining memory specific to the dense
linear solver. If any memory request fails, all memory previously
allocated is freed, and an error message printed, before returning.
**********************************************************************/
static int CVDenseInit(CVodeMem cv_mem, bool *setupNonNull)
{
CVDenseMem cvdense_mem;
cvdense_mem = (CVDenseMem) lmem;
/* Print error message and return if cvdense_mem is NULL */
if (cvdense_mem == NULL) {
fprintf(errfp, MSG_MEM_FAIL);
return(LINIT_ERR);
}
/* Set flag setupNonNull = TRUE */
*setupNonNull = TRUE;
/* Allocate memory for M, savedJ, and pivot array */
M = DenseAllocMat(N);
if (M == NULL) {
fprintf(errfp, MSG_MEM_FAIL);
return(LINIT_ERR);
}
savedJ = DenseAllocMat(N);
if (savedJ == NULL) {
fprintf(errfp, MSG_MEM_FAIL);
DenseFreeMat(M);
return(LINIT_ERR);
}
pivots = DenseAllocPiv(N);
if (pivots == NULL) {
fprintf(errfp, MSG_MEM_FAIL);
DenseFreeMat(M);
DenseFreeMat(savedJ);
return(LINIT_ERR);
}
/* Initialize nje and nstlj, and set workspace lengths */
nje = 0;
if (iopt != NULL) {
iopt[DENSE_NJE] = nje;
iopt[DENSE_LRW] = 2*N*N;
iopt[DENSE_LIW] = N;
}
nstlj = 0;
return(LINIT_OK);
}
/*************** CVDenseSetup ****************************************
This routine does the setup operations for the dense linear solver.
It makes a decision whether or not to call the Jacobian evaluation
routine based on various state variables, and if not it uses the
saved copy. In any case, it constructs the Newton matrix
M = I - gamma*J, updates counters, and calls the dense LU
factorization routine.
**********************************************************************/
static int CVDenseSetup(CVodeMem cv_mem, int convfail, N_Vector ypred,
N_Vector fpred, bool *jcurPtr, N_Vector vtemp1,
N_Vector vtemp2, N_Vector vtemp3)
{
bool jbad, jok;
real dgamma;
integer ier;
CVDenseMem cvdense_mem;
cvdense_mem = (CVDenseMem) lmem;
/* Use nst, gamma/gammap, and convfail to set J eval. flag jok */
dgamma = ABS((gamma/gammap) - ONE);
jbad = (nst == 0) || (nst > nstlj + CVD_MSBJ) ||
((convfail == FAIL_BAD_J) && (dgamma < CVD_DGMAX)) ||
(convfail == FAIL_OTHER);
jok = !jbad;
if (jok) {
/* If jok = TRUE, use saved copy of J */
*jcurPtr = FALSE;
DenseCopy(savedJ, M);
} else {
/* If jok = FALSE, call jac routine for new J value */
nje++;
if (iopt != NULL) iopt[DENSE_NJE] = nje;
nstlj = nst;
*jcurPtr = TRUE;
DenseZero(M);
jac(N, M, f, f_data, tn, ypred, fpred, ewt, h,
uround, J_data, &nfe, vtemp1, vtemp2, vtemp3);
DenseCopy(M, savedJ);
}
/* Scale and add I to get M = I - gamma*J */
DenseScale(-gamma, M);
DenseAddI(M);
/* Do LU factorization of M */
ier = DenseFactor(M, pivots);
/* Return 0 if the LU was complete; otherwise return 1 */
if (ier > 0) return(1);
return(0);
}
/*************** CVDenseSolve ****************************************
This routine handles the solve operation for the dense linear solver
by calling the dense backsolve routine. The returned value is 0.
**********************************************************************/
static int CVDenseSolve(CVodeMem cv_mem, N_Vector b, N_Vector ycur,
N_Vector fcur)
{
CVDenseMem cvdense_mem;
cvdense_mem = (CVDenseMem) lmem;
DenseBacksolve(M, pivots, b);
/* If BDF, scale the correction to account for change in gamma */
if ((lmm == BDF) && (gamrat != ONE)) {
N_VScale(TWO/(ONE + gamrat), b, b);
}
return(0);
}
/*************** CVDenseFree *****************************************
This routine frees memory specific to the dense linear solver.
**********************************************************************/
static void CVDenseFree(CVodeMem cv_mem)
{
CVDenseMem cvdense_mem;
cvdense_mem = (CVDenseMem) lmem;
DenseFreeMat(M);
DenseFreeMat(savedJ);
DenseFreePiv(pivots);
free(lmem);
}