-
Notifications
You must be signed in to change notification settings - Fork 19
/
example.py
261 lines (215 loc) · 11.3 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import tensorflow as tf
import numpy as np
from crf_rnn_layer import crf_rnn_layer
def get_spatial_rank(x):
"""
:param x: an input tensor with shape [batch_size, ..., num_channels]
:return: the spatial rank of the tensor i.e. the number of spatial dimensions between batch_size and num_channels
"""
return len(x.get_shape()) - 2
def get_num_channels(x):
"""
:param x: an input tensor with shape [batch_size, ..., num_channels]
:return: the number of channels of x
"""
return int(x.get_shape()[-1])
def get_spatial_size(x):
"""
:param x: an input tensor with shape [batch_size, ..., num_channels]
:return: The spatial shape of x, excluding batch_size and num_channels.
"""
return x.get_shape()[1:-1]
def constant_initializer(value, shape, lambda_initializer=True):
if lambda_initializer:
return np.full(shape, value).astype(np.float32)
else:
return tf.constant(value, tf.float32, shape)
def xavier_initializer_convolution(shape, dist='uniform', lambda_initializer=True):
"""
Xavier initializer for N-D convolution patches. input_activations = patch_volume * in_channels;
output_activations = patch_volume * out_channels; Uniform: lim = sqrt(3/(input_activations + output_activations))
Normal: stddev = sqrt(6/(input_activations + output_activations))
:param shape: The shape of the convolution patch i.e. spatial_shape + [input_channels, output_channels]. The order of
input_channels and output_channels is irrelevant, hence this can be used to initialize deconvolution parameters.
:param dist: A string either 'uniform' or 'normal' determining the type of distribution
:param lambda_initializer: Whether to return the initial actual values of the parameters (True) or placeholders that
are initialized when the session is initiated
:return: A numpy araray with the initial values for the parameters in the patch
"""
s = len(shape) - 2
num_activations = np.prod(shape[:s]) * np.sum(shape[s:]) # input_activations + output_activations
if dist == 'uniform':
lim = np.sqrt(6. / num_activations)
if lambda_initializer:
return np.random.uniform(-lim, lim, shape).astype(np.float32)
else:
return tf.random_uniform(shape, minval=-lim, maxval=lim)
if dist == 'normal':
stddev = np.sqrt(3. / num_activations)
if lambda_initializer:
return np.random.normal(0, stddev, shape).astype(np.float32)
else:
tf.truncated_normal(shape, mean=0, stddev=stddev)
raise ValueError('Distribution must be either "uniform" or "normal".')
def convolution(x, filter, padding='SAME', strides=None, dilation_rate=None):
w = tf.get_variable(name='weights', initializer=xavier_initializer_convolution(shape=filter))
b = tf.get_variable(name='biases', initializer=constant_initializer(0, shape=filter[-1]))
return tf.nn.convolution(x, w, padding, strides, dilation_rate) + b
def deconvolution(x, filter, output_shape, strides, padding='SAME'):
w = tf.get_variable(name='weights', initializer=xavier_initializer_convolution(shape=filter))
b = tf.get_variable(name='biases', initializer=constant_initializer(0, shape=filter[-2]))
spatial_rank = get_spatial_rank(x)
if spatial_rank == 2:
return tf.nn.conv2d_transpose(x, w, output_shape, strides, padding) + b
if spatial_rank == 3:
return tf.nn.conv3d_transpose(x, w, output_shape, strides, padding) + b
raise ValueError('Only 2D and 3D images supported.')
# down convolution
def down_convolution(x, factor, kernel_size):
num_channels = get_num_channels(x)
spatial_rank = get_spatial_rank(x)
strides = spatial_rank * [factor]
filter = spatial_rank * [kernel_size] + [num_channels, num_channels * factor]
x = convolution(x, filter, strides=strides)
return x
# up convolution
def up_convolution(x, output_shape, factor, kernel_size):
num_channels = get_num_channels(x)
spatial_rank = get_spatial_rank(x)
strides = [1] + spatial_rank * [factor] + [1]
filter = spatial_rank * [kernel_size] + [num_channels // factor, num_channels]
x = deconvolution(x, filter, output_shape, strides=strides)
return x
def convolution_block(layer_input, num_convolutions, keep_prob, activation_fn):
n_channels = get_num_channels(layer_input)
spatial_rank = get_spatial_rank(layer_input)
x = layer_input
kernel = spatial_rank * [5] + [n_channels, n_channels]
for i in range(num_convolutions):
with tf.variable_scope('conv_' + str(i + 1)):
x = convolution(x, kernel)
if i == num_convolutions - 1:
x = x + layer_input
x = activation_fn(x)
x = tf.nn.dropout(x, keep_prob)
return x
def convolution_block_2(layer_input, fine_grained_features, num_convolutions, keep_prob, activation_fn):
n_channels = get_num_channels(layer_input)
spatial_rank = get_spatial_rank(layer_input)
x = tf.concat((layer_input, fine_grained_features), axis=-1)
for i in range(0, num_convolutions):
with tf.variable_scope('conv_' + str(i + 1)):
kernel = spatial_rank * [5]
kernel = kernel + [n_channels * 2, n_channels] if i == 0 else kernel + [n_channels, n_channels]
x = convolution(x, kernel)
if i == num_convolutions - 1:
x = x + layer_input
x = activation_fn(x)
x = tf.nn.dropout(x, keep_prob)
return x
class VNetCRF(object):
def __init__(self,
num_classes,
keep_prob=1.0,
num_channels=16,
num_levels=4,
num_convolutions=(1, 2, 3, 3),
bottom_convolutions=3,
activation_fn=tf.nn.relu,
theta_alpha=50,
theta_beta=25,
theta_gamma=50,
num_iterations=5):
"""
Implements VNet architecture https://arxiv.org/abs/1606.04797
:param num_classes: Number of output classes.
:param keep_prob: Dropout keep probability, set to 1.0 if not training or if no dropout is desired.
:param num_channels: The number of output channels in the first level, this will be doubled every level.
:param num_levels: The number of levels in the network. Default is 4 as in the paper.
:param num_convolutions: An array with the number of convolutions at each level.
:param bottom_convolutions: The number of convolutions at the bottom level of the network.
:param activation_fn: The activation function.
:param theta_alpha: Spatial standard deviation for bilateral filter
:param theta_beta: Color standard deviation for bilateral filter
:param theta_gamma: Spatial standard deviation for Gaussian filter
:param num_iterations: Number of iterations for mean field approximation of the CRF
"""
self.num_classes = num_classes
self.keep_prob = keep_prob
self.num_channels = num_channels
assert num_levels == len(num_convolutions)
self.num_levels = num_levels
self.num_convolutions = num_convolutions
self.bottom_convolutions = bottom_convolutions
self.activation_fn = activation_fn
self.theta_alpha = theta_alpha
self.theta_beta = theta_beta
self.theta_gamma = theta_gamma
self.num_iterations = num_iterations
def network_fn(self, x, is_training):
input_image = x
input_channels = get_num_channels(x)
spatial_rank = get_spatial_rank(x)
keep_prob = self.keep_prob if is_training else 1.0
# if the input has more than 1 channel it has to be expanded because broadcasting only works for 1 input
# channel
with tf.variable_scope('vnet/input_layer'):
if input_channels == 1:
x = tf.tile(x, (spatial_rank + 1) * [1] + [self.num_channels])
else:
x = self.activation_fn(convolution(x, spatial_rank * [5] + [input_channels, self.num_channels]))
features = list()
for l in range(self.num_levels):
with tf.variable_scope('vnet/encoder/level_' + str(l + 1)):
x = convolution_block(x, self.num_convolutions[l], keep_prob, activation_fn=self.activation_fn)
features.append(x)
with tf.variable_scope('down_convolution'):
x = self.activation_fn(down_convolution(x, factor=2, kernel_size=2))
with tf.variable_scope('vnet/bottom_level'):
x = convolution_block(x, self.bottom_convolutions, keep_prob, activation_fn=self.activation_fn)
for l in reversed(range(self.num_levels)):
with tf.variable_scope('vnet/decoder/level_' + str(l + 1)):
f = features[l]
with tf.variable_scope('up_convolution'):
x = self.activation_fn(up_convolution(x, tf.shape(f), factor=2, kernel_size=2))
x = convolution_block_2(x, f, self.num_convolutions[l], keep_prob, activation_fn=self.activation_fn)
with tf.variable_scope('vnet/output_layer'):
logits = convolution(x, spatial_rank * [1] + [self.num_channels, self.num_classes])
with tf.variable_scope('crf_as_rnn'):
logits = crf_rnn_layer(unaries=logits,
reference_image=input_image,
num_classes=self.num_classes,
theta_alpha=self.theta_alpha,
theta_beta=self.theta_beta,
theta_gamma=self.theta_gamma,
num_iterations=self.num_iterations)
return logits
def input_function(batch_size, reference_channels, num_classes):
# dummy inputs (feed your own images by using TFRecordDataset: tf.data.TFRecordDataset(filenames))
input_image = tf.constant(1.0, shape=(batch_size, 100, 100, 50, reference_channels), dtype=tf.float32)
ground_truth = tf.constant(1.0, shape=(batch_size, 100, 100, 50, num_classes), dtype=tf.float32)
dataset = tf.data.Dataset.from_tensors((input_image, ground_truth))
dataset = dataset.repeat(10) # 10 epochs
iterator = dataset.make_one_shot_iterator()
return iterator.get_next()
if __name__ == "__main__":
# Compile with SPATIAL_DIMENSIONS=3, REFERENCE_CHANNELS=4, INPUT_CHANNELS=2 (num_classes)
BATCH_SIZE = 1
REFERENCE_CHANNELS = 4
INPUT_CHANNELS = 2
num_classes = INPUT_CHANNELS
with tf.Graph().as_default():
input_image, ground_truth = input_function(BATCH_SIZE, REFERENCE_CHANNELS, num_classes)
net = VNetCRF(num_classes=num_classes)
logits = net.network_fn(input_image, is_training=True)
logits = tf.reshape(logits, (-1, num_classes))
labels = tf.reshape(ground_truth, (-1, num_classes))
loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels, logits=logits)
train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
probability = tf.nn.softmax(logits)
prediction = tf.round(probability)
# calculate dice coefficient and/or other metrics that are useful to you
with tf.Session() as sess:
while not sess.should_stop():
_, l, p, = sess.run([train_op, loss, prediction])
print('loss: %:.3f\n'.format(l))