This page explains an configuration for EVPN. Note that the feature is still very experimental.
Some route types requires to specify Ethernet Segment Identifier (ESI) for its argument. The supported ESI types and their formats are the following.
Type | Format | Description |
---|---|---|
0 | single-homed | Reserved keyword for arbitrary ESI type to denote a single-homed site. |
0 | 0 | The same with "single-homed". |
0 | ARBITRARY <Value> | Arbitrary ESI type with arbitrary value. Value should be colon separated hex values (similar to MAC address). |
1 | LACP <MAC> <Port Key> | Type for LACP configured segment. |
2 | MSTP <MAC> <Priority> | Type for L2 bridge protocol (e.g., Multiple Spanning Tree Protocol) configured segment. |
3 | MAC <MAC> <Discriminator> | Type for ESI based on MAC address. |
4 | ROUTERID <Router ID> <Discriminator> | Type for ESI based on Router ID. |
5 | AS <AS> <Discriminator> | Type for ESI based on AS number. |
# single-homed
$ gobgp global rib -a evpn add a-d esi single-homed etag 100 label 200 rd 1.1.1.1:100
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:A-D][rd:1.1.1.1:100][esi:single-homed][etag:100] [200] 0.0.0.0 00:00:00 [{Origin: ?}]
# ARBITRARY <Value>
$ gobgp global rib -a evpn add a-d esi ARBITRARY 11:22:33:44:55:66:77:88:99 etag 100 label 200 rd 1.1.1.1:100
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:A-D][rd:1.1.1.1:100][esi:ESI_ARBITRARY | 11:22:33:44:55:66:77:88:99][etag:100] [200] 0.0.0.0 00:00:00 [{Origin: ?}]
# LACP <MAC> <Port Key>
$ gobgp global rib -a evpn add a-d esi LACP aa:bb:cc:dd:ee:ff 10 etag 100 label 200 rd 1.1.1.1:100
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:A-D][rd:1.1.1.1:100][esi:ESI_LACP | system mac aa:bb:cc:dd:ee:ff, port key 10][etag:100] [200] 0.0.0.0 00:00:00 [{Origin: ?}]
# MSTP <MAC> <Priority>
$ gobgp global rib -a evpn add a-d esi MSTP aa:bb:cc:dd:ee:ff 10 etag 100 label 200 rd 1.1.1.1:100
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:A-D][rd:1.1.1.1:100][esi:ESI_MSTP | bridge mac aa:bb:cc:dd:ee:ff, priority 10][etag:100] [200] 0.0.0.0 00:00:00 [{Origin: ?}]
# MAC <MAC> <Discriminator>
$ gobgp global rib -a evpn add a-d esi MAC aa:bb:cc:dd:ee:ff 10 etag 100 label 200 rd 1.1.1.1:100
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:A-D][rd:1.1.1.1:100][esi:ESI_MAC | system mac aa:bb:cc:dd:ee:ff, local discriminator 10][etag:100] [200] 0.0.0.0 00:00:00 [{Origin: ?}]
# ROUTERID <Router ID> <Discriminator>
$ gobgp global rib -a evpn add a-d esi ROUTERID 1.1.1.1 10 etag 100 label 200 rd 1.1.1.1:100
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:A-D][rd:1.1.1.1:100][esi:ESI_ROUTERID | router id 1.1.1.1, local discriminator 10][etag:100] [200] 0.0.0.0 00:00:00 [{Origin: ?}]
# AS <AS> <Discriminator>
$ gobgp global rib -a evpn add a-d esi AS 65000 10 etag 100 label 200 rd 1.1.1.1:100
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:A-D][rd:1.1.1.1:100][esi:ESI_AS | as 65000, local discriminator 10][etag:100] [200] 0.0.0.0 00:00:00 [{Origin: ?}]
# Add a route
$ gobgp global rib -a evpn add a-d esi <esi> etag <etag> label <label> rd <rd> [rt <rt>...] [encap <encap type>] [esi-label <esi-label> [single-active | all-active]]
# Show routes
$ gobgp global rib -a evpn [a-d]
# Delete route
$ gobgp global rib -a evpn del a-d esi <esi> etag <etag> label <label> rd <rd>
# Simple case
$ gobgp global rib -a evpn add a-d esi 0 etag 100 label 200 rd 1.1.1.1:65000
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:A-D][rd:1.1.1.1:65000][esi:single-homed][etag:100] [200] 0.0.0.0 00:00:00 [{Origin: ?}]
$ gobgp global rib -a evpn del a-d esi 0 etag 100 label 200 rd 1.1.1.1:65000
# With optionals
$ gobgp global rib -a evpn add a-d esi LACP aa:bb:cc:dd:ee:ff 100 etag 200 label 300 rd 1.1.1.1:65000 rt 65000:200 encap vxlan esi-label 400 single-active
$ gobgp global rib -a evpn a-d
Network Labels Next Hop AS_PATH Age Attrs
*> [type:A-D][rd:1.1.1.1:65000][esi:ESI_LACP | system mac aa:bb:cc:dd:ee:ff, port key 100][etag:200] [300] 0.0.0.0 00:00:00 [{Origin: ?} {Extcomms: [65000:200], [VXLAN], [esi-label: 400, single-active]}]
$ gobgp global rib -a evpn del a-d esi LACP aa:bb:cc:dd:ee:ff 100 etag 200 label 300 rd 1.1.1.1:65000
# Add a route
$ gobgp global rib -a evpn add macadv <mac address> <ip address> [esi <esi>] etag <etag> label <label> rd <rd> [rt <rt>...] [encap <encap type>] [default-gateway]
# Show routes
$ gobgp global rib -a evpn [macadv]
# Delete route
$ gobgp global rib -a evpn del macadv <mac address> <ip address> [esi <esi>] etag <etag> label <label> rd <rd>
# Simple case
$ gobgp global rib -a evpn add macadv aa:bb:cc:dd:ee:ff 10.0.0.1 etag 100 label 200,300 rd 1.1.1.1:65000
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:macadv][rd:1.1.1.1:65000][etag:100][mac:aa:bb:cc:dd:ee:ff][ip:10.0.0.1] [200,300] 0.0.0.0 00:00:00 [{Origin: ?} [ESI: single-homed]]
$ gobgp global rib -a evpn del macadv aa:bb:cc:dd:ee:ff 10.0.0.1 etag 100 label 200,300 rd 1.1.1.1:65000
# With optionals
$ gobgp global rib -a evpn add macadv aa:bb:cc:dd:ee:ff 10.0.0.1 esi AS 65000 100 etag 200 label 300 rd 1.1.1.1:65000 rt 65000:400 encap vxlan default-gateway
$ gobgp global rib -a evpn macadv
Network Labels Next Hop AS_PATH Age Attrs
*> [type:macadv][rd:1.1.1.1:65000][etag:200][mac:aa:bb:cc:dd:ee:ff][ip:10.0.0.1] [300] 0.0.0.0 00:00:00 [{Origin: ?} {Extcomms: [65000:400], [VXLAN], [default-gateway]} [ESI: ESI_AS | as 65000, local discriminator 100]]
$ gobgp global rib -a evpn del macadv aa:bb:cc:dd:ee:ff 10.0.0.1 esi AS 65000 100 etag 200 label 300 rd 1.1.1.1:65000
# Add a route
$ gobgp global rib -a evpn add multicast <ip address> etag <etag> rd <rd> [rt <rt>...] [encap <encap type>] [pmsi <type> [leaf-info-required] <label> <tunnel-id>]
# Show routes
$ gobgp global rib -a evpn [multicast]
# Delete route
$ gobgp global rib -a evpn del multicast <ip address> etag <etag> rd <rd>
# Simple case
$ gobgp global rib -a evpn add multicast 10.0.0.1 etag 100 rd 1.1.1.1:65000
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:multicast][rd:1.1.1.1:65000][etag:100][ip:10.0.0.1] 0.0.0.0 00:00:00 [{Origin: ?}]
$ gobgp global rib -a evpn del multicast 10.0.0.1 etag 100 rd 1.1.1.1:65000
# With optionals
$ gobgp global rib -a evpn add multicast 10.0.0.1 etag 100 rd 1.1.1.1:65000 rt 65000:200 encap vxlan pmsi ingress-repl 100 1.1.1.1
$ gobgp global rib -a evpn multicast
Network Labels Next Hop AS_PATH Age Attrs
*> [type:multicast][rd:1.1.1.1:65000][etag:100][ip:10.0.0.1] 0.0.0.0 00:00:00 [{Origin: ?} {Pmsi: type: ingress-repl, label: 100, tunnel-id: 1.1.1.1} {Extcomms: [65000:200], [VXLAN]}]
# Add a route
$ gobgp global rib -a evpn add esi <ip address> esi <esi> rd <rd> [rt <rt>...] [encap <encap type>]
# Show routes
$ gobgp global rib -a evpn [esi]
# Delete route
$ gobgp global rib -a evpn del esi <ip address> esi <esi> rd <rd>
# Simple case
$ gobgp global rib -a evpn add esi 10.0.0.1 esi 0 rd 1.1.1.1:65000
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:esi][rd:1.1.1.1:65000][esi:single-homed][ip:10.0.0.1] 0.0.0.0 00:00:00 [{Origin: ?}]
$ gobgp global rib -a evpn del esi 10.0.0.1 esi 0 rd 1.1.1.1:65000
# With optionals
$ gobgp global rib -a evpn add esi 10.0.0.1 esi MAC aa:bb:cc:dd:ee:ff 100 rd 1.1.1.1:65000 rt 65000:200 encap vxlan
$ gobgp global rib -a evpn esi
Network Labels Next Hop AS_PATH Age Attrs
*> [type:esi][rd:1.1.1.1:65000][esi:ESI_MAC | system mac aa:bb:cc:dd:ee:ff, local discriminator 100][ip:10.0.0.1] 0.0.0.0 00:00:00 [{Origin: ?} {Extcomms: [65000:200], [VXLAN], [es-import rt: aa:bb:cc:dd:ee:ff]}]
$ gobgp global rib -a evpn del esi 10.0.0.1 esi MAC aa:bb:cc:dd:ee:ff 100 rd 1.1.1.1:65000
# Add a route
$ gobgp global rib -a evpn add prefix <ip prefix> [gw <gateway>] [esi <esi>] etag <etag> [label <label>] rd <rd> [rt <rt>...] [encap <encap type>] [router-mac <mac address>]
# Show routes
$ gobgp global rib -a evpn [prefix]
# Delete route
$ gobgp global rib -a evpn del prefix <ip prefix> [gw <gateway>] [esi <esi>] etag <etag> [label <label>] rd <rd>
# Simple case
$ gobgp global rib -a evpn add prefix 10.0.0.0/24 etag 100 rd 1.1.1.1:65000
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:Prefix][rd:1.1.1.1:65000][etag:100][prefix:10.0.0.0/24] [0] 0.0.0.0 00:00:00 [{Origin: ?} [ESI: single-homed] [GW: 0.0.0.0]]
$ gobgp global rib -a evpn del prefix 10.0.0.0/24 etag 100 rd 1.1.1.1:65000
# With optionals
$ gobgp global rib -a evpn add prefix 10.0.0.0/24 172.16.0.1 esi MSTP aa:aa:aa:aa:aa:aa 100 etag 200 label 300 rd 1.1.1.1:65000 rt 65000:200 encap vxlan router-mac bb:bb:bb:bb:bb:bb
$ gobgp global rib -a evpn prefix
Network Labels Next Hop AS_PATH Age Attrs
*> [type:Prefix][rd:1.1.1.1:65000][etag:200][prefix:10.0.0.0/24] [300] 0.0.0.0 00:00:00 [{Origin: ?} {Extcomms: [65000:200], [VXLAN], [router's mac: bb:bb:bb:bb:bb:bb]} [ESI: ESI_MSTP | bridge mac aa:aa:aa:aa:aa:aa, priority 100] [GW: 0.0.0.0]]
$ gobgp global rib -a evpn del prefix 10.0.0.0/24 172.16.0.1 esi MSTP aa:aa:aa:aa:aa:aa 100 etag 200 label 300 rd 1.1.1.1:65000
The router-mac
option in gobgp
CLI allows sending Router's
MAC Extended Community via BGP EVPN Type 2 and Type 5 advertisements.
As explained in below RFC draft, this community is used to carry the MAC address of the VTEP where MAC-IP pair resides.
For example, GoBGP router (R1) peers with Cisco router (R2). R1 is used by an orchestraction platform, e.g. OpenStack, Docker Swarm, etc., to advertise container MAC-IP bindings. When R1 advertises the binding it also sets next hop for the route as the host where the MAC-IP binding (i.e. container) resides. When R2 receives the route, it will not install it unless Router's MAC Extended Community is present. R2 will use the MAC address in the community to create an entry in MAC address table of R2 pointint to NVE interface.
gobgp global rib -a evpn add macadv e9:72:d7:aa:1f:b4 \
172.16.100.100 etag 0 label 34567 rd 10.1.1.1:100 \
rt 65001:100 encap vxlan nexthop 10.10.10.10 \
origin igp router-mac e9:72:d7:aa:1f:b4
gobgp global rib -a evpn add nexthop 10.10.10.10 origin igp \
prefix 172.16.100.100/32 esi 0 etag 0 rd 10.1.1.1:100 \
rt 65001:100 gw 10.10.10.10 label 34567 encap vxlan \
router-mac e9:72:d7:aa:1f:b4
In the above example, a host with IP of 10.10.10.10
runs a
container connected to an Open vSwitch instance. The container's IP
address is 172.16.100.100
and MAC address e9:72:d7:aa:1f:b4
.
The Open vSwitch is VTEP with tunnel_key=34567
, i.e. VNID 34567
.
GoBGP (R1) and Cisco (R2) routers are in BGP AS 65001. R1's IP is
10.1.1.1
. R2 used RT of 65001:100
to import routes and place
them into appropriate VRF. In this case the VRF is associated with
L2VNI from VLAN 300. Upon the receipt of the above BGP EVPN
Type 2 and Type 5 routes, R2 will create create a MAC address
entry pointing to it's NVE interface with destination IP address
of 10.10.10.10
.
Legend:
* - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay MAC
age - seconds since last seen,+ - primary entry using vPC Peer-Link,
(T) - True, (F) - False, C - ControlPlane MAC
VLAN MAC Address Type age Secure NTFY Ports
---------+-----------------+--------+---------+------+----+------------------
* 300 e972.d7aa.1fb4 static - F F nve1(10.10.10.10)
The R2 will use the router-mac e9:72:d7:aa:1f:b4
as the destination MAC
address of the inner VXLAN packet. For example, an underlay host 20.20.20.20
ping the container. The inner VXLAN L2 destination address is
e9:72:d7:aa:1f:b4
. The inner VXLAN L2 source address is R2's MAC. The outer
VXLAN L3 source address, i.e. 10.2.2.2
is R2' NVE address.
OUTER VXLAN L2: 10:20:08:d0:ff:23 > b2:0e:19:6a:8d:51
OUTER VXLAN L3: 10.2.2.2.45532 > 10.10.10.10.4789: VXLAN, flags [I] (0x08), vni 34567
INNER VXLAN L2: 4e:f4:ca:aa:f6:7b > e9:72:d7:aa:1f:b4
INNER VXLAN L3: 20.20.20.20 > 172.16.100.100: ICMP echo reply, id 66, seq 1267, length 64
See also: Integrated Routing and Bridging in EVPN
This example uses BaGPipe. GoBGP receives routes from one BaGPipe peer and advertises it to another BaGPipe peer.
NOTE: The following supposes to use BaGPipe version "7.0.0".
Please note BaGPipe supports only iBGP. So here supposes a topology that GoBGP is configured as Route Reflector. Two BaGPipe peers are Route Reflector clients and not connected to each other. Then the following example shows two OSS BGP implementations can interchange EVPN messages.
Topology:
+------------+
| GoBGP (RR) |
+-----| AS 65000 |-----+
| | 10.0.0.254 | |
| +------------+ |
| |
(iBGP) (iBGP)
| |
+----------+ +----------+
| BaGPipe | | BaGPipe |
| AS 65000 | | AS 65000 |
| 10.0.0.1 | | 10.0.0.2 |
+----------+ +----------+
The following shows the sample configuration for GoBGP. The point is that "l2vpn-evpn" families to be advertised need to be specified.
GoBGP on "10.0.0.254": gobgpd.toml
[global.config]
as = 65000
router-id = "10.0.0.254"
[[neighbors]]
[neighbors.config]
neighbor-address = "10.0.0.1"
peer-as = 65000
[neighbors.route-reflector.config]
route-reflector-client = true
route-reflector-cluster-id = "10.0.0.254"
[[neighbors.afi-safis]]
[neighbors.afi-safis.config]
afi-safi-name = "l2vpn-evpn"
[[neighbors]]
[neighbors.config]
neighbor-address = "10.0.0.2"
peer-as = 65000
[neighbors.route-reflector.config]
route-reflector-client = true
route-reflector-cluster-id = "10.0.0.254"
[[neighbors.afi-safis]]
[neighbors.afi-safis.config]
afi-safi-name = "l2vpn-evpn"
If you are not familiar with BaGPipe, the following shows our configuration files.
BaGPipe peer on "10.0.0.1": /etc/bagpipe-bgp/bgp.conf
[BGP]
local_address=10.0.0.1
peers=10.0.0.254
my_as=65000
enable_rtc=True
[API]
host=localhost
port=8082
[DATAPLANE_DRIVER_IPVPN]
dataplane_driver = DummyDataplaneDriver
[DATAPLANE_DRIVER_EVPN]
dataplane_driver = DummyDataplaneDriver
BaGPipe peer on "10.0.0.2": /etc/bagpipe-bgp/bgp.conf
[BGP]
local_address=10.0.0.2
peers=10.0.0.254
my_as=65000
enable_rtc=True
[API]
api_host=localhost
api_port=8082
[DATAPLANE_DRIVER_IPVPN]
dataplane_driver = DummyDataplaneDriver
[DATAPLANE_DRIVER_EVPN]
dataplane_driver = DummyDataplaneDriver
Then, run GoBGP and BaGPipe peers.
# GoBGP
$ gobgpd -f gobgpd.toml
# BaGPipe
# If bgp.conf does not locate on the default path, please specify the config file as following.
$ bagpipe-bgp --config-file /etc/bagpipe-bgp/bgp.conf
As you expect, the RIBs at BaGPipe peer on "10.0.0.2" has nothing.
# BaGPipe peer on "10.0.0.2"
$ bagpipe-looking-glass bgp routes
l2vpn/evpn,*: -
ipv4/mpls-vpn,*: -
ipv4/rtc,*: -
ipv4/flow-vpn,*: -
Let's advertise EVPN routes from BaGPipe peer on "10.0.0.1".
# BaGPipe peer on "10.0.0.1"
$ bagpipe-rest-attach --attach --network-type evpn --port tap-dummy --mac 00:11:22:33:44:55 --ip 11.11.11.1 --gateway-ip 11.11.11.254 --rt 65000:77 --vni 100
request: {"import_rt": ["65000:77"], "lb_consistent_hash_order": 0, "vpn_type": "evpn", "vni": 100, "vpn_instance_id": "evpn-bagpipe-test", "ip_address": "11.11.11.1/24", "export_rt": ["65000:77"], "local_port": {"linuxif": "tap-dummy"}, "advertise_subnet": false, "attract_traffic": {}, "gateway_ip": "11.11.11.254", "mac_address": "00:11:22:33:44:55", "readvertise": null}
response: 200 null
Now the RIBs at GoBGP and BaGPipe peer "10.0.0.2" has the advertised routes. The route was interchanged via GoBGP peer.
# GoBGP
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:macadv][rd:10.0.0.1:118][etag:0][mac:00:11:22:33:44:55][ip:11.11.11.1] [1601] 10.0.0.1 hh:mm:ss [{Origin: i} {LocalPref: 100} {Extcomms: [VXLAN], [65000:77]} [ESI: single-homed]]
*> [type:multicast][rd:10.0.0.1:118][etag:0][ip:10.0.0.1] 10.0.0.1 hh:mm:ss [{Origin: i} {LocalPref: 100} {Extcomms: [VXLAN], [65000:77]} {Pmsi: type: ingress-repl, label: 1600, tunnel-id: 10.0.0.1}]
# BaGPipe peer on "10.0.0.2"
$ bagpipe-looking-glass bgp routes
l2vpn/evpn,*:
* evpn:macadv::10.0.0.1:118:-:0:00:11:22:33:44:55/48:11.11.11.1: label [ 100 ]:
attributes:
originator-id: 10.0.0.1
cluster-list: [ 10.0.0.254 ]
extended-community: [ target:65000:77 encap:VXLAN ]
next_hop: 10.0.0.1
afi-safi: l2vpn/evpn
source: BGP-10.0.0.254 (...)
route_targets:
* target:65000:77
* evpn:multicast::10.0.0.1:118:0:10.0.0.1:
attributes:
cluster-list: [ 10.0.0.254 ]
originator-id: 10.0.0.1
pmsi-tunnel: pmsi:ingressreplication:-:100:10.0.0.1
extended-community: [ target:65000:77 encap:VXLAN ]
next_hop: 10.0.0.1
afi-safi: l2vpn/evpn
source: BGP-10.0.0.254 (...)
route_targets:
* target:65000:77
ipv4/mpls-vpn,*: -
ipv4/rtc,*: -
ipv4/flow-vpn,*: -
Just like the example using BaGPipe, this example uses YABGP. GoBGP receives EVPN routes from one YABGP peer and re-advertises it to another YABGP peer.
NOTE: The following supposes to use YABGP version "0.4.0".
YABGP supports eBGP peering. The following example shows GoBGP and two YABGP peers are connected with eBGP and GoBGP interchanges EVPN routes from one YABGP peer to another.
Topology:
+------------+
| GoBGP |
+-----| AS 65254 |-----+
| | 10.0.0.254 | |
| +------------+ |
| |
(eBGP) (eBGP)
| |
+----------+ +----------+
| YABGP | | YABGP |
| AS 65001 | | AS 65002 |
| 10.0.0.1 | | 10.0.0.2 |
+----------+ +----------+
GoBGP on "10.0.0.254": gobgpd.toml
[global.config]
as = 65254
router-id = "10.0.0.254"
[[neighbors]]
[neighbors.config]
neighbor-address = "10.0.0.1"
peer-as = 65001
[[neighbors.afi-safis]]
[neighbors.afi-safis.config]
afi-safi-name = "l2vpn-evpn"
[[neighbors]]
[neighbors.config]
neighbor-address = "10.0.0.2"
peer-as = 65002
[[neighbors.afi-safis]]
[neighbors.afi-safis.config]
afi-safi-name = "l2vpn-evpn"
You can start YABGP with the following CLI options:
# YABGP peer on "10.0.0.1"
$ yabgpd --bgp-local_as=65001 --bgp-local_addr=10.0.0.1 --bgp-remote_addr=10.0.0.254 --bgp-remote_as=65254 --bgp-afi_safi=evpn
# YABGP peer on "10.0.0.2"
$ yabgpd --bgp-local_as=65002 --bgp-local_addr=10.0.0.2 --bgp-remote_addr=10.0.0.254 --bgp-remote_as=65254 --bgp-afi_safi=evpn
Then, you can see GoBGP can connect to two YABGP peers by using gobgp command:
# GoBGP
$ gobgpd -f gobgpd.toml
...(snip)...
$ gobgp neighbor
Peer AS Up/Down State |#Received Accepted
10.0.0.1 65001 hh:mm:ss Establ | 0 0
10.0.0.2 65002 hh:mm:ss Establ | 0 0
We can advertise EVPN routes from YABGP 10.0.0.1 through its REST
API.
In the REST request, you need to specify the Authorization
header is admin/admin
, and the
Content-Type
is application/json
.
Request URL for sending UPDATE messages:
POST http://10.0.0.1:8801/v1/peer/10.0.0.254/send/update
We will run this API four times to advertise four EVPN route types. The following example use "curl" command for sending POST request.
EVPN type 1:
curl -X POST -u admin:admin -H 'Content-Type: application/json' http://10.0.0.1:8801/v1/peer/10.0.0.254/send/update -d '{
"attr": {
"1": 0,
"2": [],
"5": 100,
"14": {
"afi_safi": [
25,
70
],
"nexthop": "10.75.44.254",
"nlri": [
{
"type": 1,
"value": {
"esi": 0,
"eth_tag_id": 100,
"label": [
10
],
"rd": "1.1.1.1:32867"
}
}
]
},
"16": [
"esi-label:0:500"
]
}
}'
EVPN type 2:
curl -X POST -u admin:admin -H 'Content-Type: application/json' http://10.0.0.1:8801/v1/peer/10.0.0.254/send/update -d '{
"attr": {
"1": 0,
"2": [],
"5": 100,
"14": {
"afi_safi": [
25,
70
],
"nexthop": "10.75.44.254",
"nlri": [
{
"type": 2,
"value": {
"esi": 0,
"eth_tag_id": 108,
"ip": "11.11.11.1",
"label": [
0
],
"mac": "00-11-22-33-44-55",
"rd": "172.17.0.3:2"
}
}
]
},
"16": [
"mac-mobility:1:500"
]
}
}'
EVPN type 3:
curl -X POST -u admin:admin -H 'Content-Type: application/json' http://10.0.0.1:8801/v1/peer/10.0.0.254/send/update -d '{
"attr": {
"1": 0,
"2": [],
"5": 100,
"14": {
"afi_safi": [
25,
70
],
"nexthop": "10.75.44.254",
"nlri": [
{
"type": 3,
"value": {
"eth_tag_id": 100,
"ip": "192.168.0.1",
"rd": "172.16.0.1:5904"
}
}
]
}
}
}'
EVPN type 4:
curl -X POST -u admin:admin -H 'Content-Type: application/json' http://10.0.0.1:8801/v1/peer/10.0.0.254/send/update -d '{
"attr": {
"1": 0,
"2": [],
"5": 100,
"14": {
"afi_safi": [
25,
70
],
"nexthop": "10.75.44.254",
"nlri": [
{
"type": 4,
"value": {
"esi": 0,
"ip": "192.168.0.1",
"rd": "172.16.0.1:8888"
}
}
]
},
"16": [
"es-import:00-11-22-33-44-55"
]
}
}'
GoBGP will receive these four routes and re-advertise them to YABGP peer on "10.0.0.2"
# GoBGP
$ gobgp global rib -a evpn
Network Labels Next Hop AS_PATH Age Attrs
*> [type:A-D][rd:1.1.1.1:32867][esi:single-homed][etag:100] [161] 10.75.44.254 hh:mm:ss [{Extcomms: [esi-label: 8001]} {Origin: i} {LocalPref: 100}]
*> [type:esi][rd:172.16.0.1:8888][esi:single-homed][ip:192.168.0.1] 10.75.44.254 hh:mm:ss [{Extcomms: [es-import rt: 00:11:22:33:44:55]} {Origin: i} {LocalPref: 100}]
*> [type:macadv][rd:172.17.0.3:2][etag:108][mac:00:11:22:33:44:55][ip:11.11.11.1] [0] 10.75.44.254 hh:mm:ss [{Extcomms: [mac-mobility: 500, sticky]} {Origin: i} {LocalPref: 100} [ESI: single-homed]]
*> [type:multicast][rd:172.16.0.1:5904][etag:100][ip:192.168.0.1] 10.75.44.254 hh:mm:ss [{Origin: i} {LocalPref: 100}]
Then, check statistics of neighbors for confirming the number of re-advertised routes.
# GoBGP
$ gobgp neighbor
Peer AS Up/Down State |#Received Accepted
10.0.0.1 65001 hh:mm:ss Establ | 4 4
10.0.0.2 65002 hh:mm:ss Establ | 0 0
$ gobgp neighbor 10.0.0.2
BGP neighbor is 10.0.0.2, remote AS 65002
BGP version 4, remote router ID 10.0.0.2
BGP state = established, up for hh:mm:ss
BGP OutQ = 0, Flops = 0
Hold time is 90, keepalive interval is 30 seconds
Configured hold time is 90, keepalive interval is 30 seconds
Neighbor capabilities:
multiprotocol:
l2vpn-evpn: advertised and received
route-refresh: advertised and received
4-octet-as: advertised and received
enhanced-route-refresh: received
cisco-route-refresh: received
Message statistics:
Sent Rcvd
Opens: 2 2
Notifications: 0 0
Updates: 4 0
Keepalives: 2 2
Route Refresh: 0 0
Discarded: 0 0
Total: 8 4
Route statistics:
Advertised: 4
Received: 0
Accepted: 0