-
-
Notifications
You must be signed in to change notification settings - Fork 78
/
MonetaryAmount.java
611 lines (571 loc) · 27.5 KB
/
MonetaryAmount.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
* Copyright 2012-2016 Credit Suisse
* Copyright 2018-2020 Werner Keil, Otavio Santana, Trivadis AG
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package javax.money;
/**
* Interface defining a monetary amount. The effective format representation of an amount may vary
* depending on the implementation used. JSR 354 explicitly supports different types of monetary
* amounts to be implemented and used. Reason behind is that the requirements to an implementation
* heavily vary for different usage scenarios. E.g. product calculations may require high precision
* and scale, whereas low latency order and trading systems require high calculation performance for
* algorithmic operations.
* <p>
* Each instance of an amount provides additional meta-data in form of a {@link MonetaryContext}.
* This context contains detailed information on the numeric capabilities, e.g. the supported
* precision and maximal scale, as well as the common implementation flavor.
*
* Also a {@link MonetaryAmount} provides a {@link NumberValue}, which allows easily to extract the
* numeric value, of the amount. And finally {@link #getFactory()} provides a
* {@link MonetaryAmountFactory}, which allows to of instances of {@link MonetaryAmount} based
* on the same numeric implementation.
* <p>
* This JSR additionally recommends to consider the following aspects:
* <ul>
* <li>Arithmetic operations should throw an {@link ArithmeticException}, if performing arithmetic
* operations between amounts exceeds the capabilities of the numeric representation type used. Any
* implicit truncating, that would lead to complete invalid and useless results, should be avoided.
* This recommendation does not affect format rounding, as required by the format numeric
* representation of a monetary amount.
* <li>Monetary amounts should allow numbers as argument for arithmetic operations like division and
* multiplication. Adding or subtracting of amounts must only be possible by passing instances of
* {@link MonetaryAmount}.</li>
* <li>Nevertheless numeric truncation is also explicitly supported when calling
* {@link NumberValue#numberValue(Class)}, whereas the <i>exact</i> counterpart,
* {@link NumberValue#numberValueExact(Class)}, works similar to
* {@link java.math.BigDecimal#longValueExact()}.
* <li>Since implementations are recommended to be immutable, an operation should never change any
* format state of an instance. Given an instance, all operations are required to be fully
* reproducible.</li>
* <li>Finally the result of calling {@link #with(MonetaryOperator)} must be of the same type as
* type on which {@code with} was called. The {@code with} method also defines additional
* interoperability requirements that are important to enable this invariant.</li>
* <li>To enable further interoperability a static method {@code from(MonetaryAmount)} is
* recommended to be implemented on each implementation class, that allows conversion of a
* {@code MonetaryAmount} to a concrete instance. E.g.a class {@code MyMoney extends MonetaryAmount}
* would contain the following method:
*
* <blockquote>
* <pre><code>
* public final class MyMoney implements MonetaryAmount{
* ...
* public static MyMoney from(MonetaryAmount amount)(...)
* }
* </code></pre>
* </blockquote></li>
* </ul>
* <h3>Implementation specification</h3>
* Implementations of this interface must be
* <ul>
* <li>thread-safe</li>
* </ul>
* Implementations of this interface should be
* <ul>
* <li>final</li>
* <li>serializable, hereby writing the numeric value, the {@link MonetaryContext} and a serialized
* {@link CurrencyUnit}.</li>
* </ul>
* Implementations of this interface must be
* <ul>
* <li>thread-safe</li>
* <li>immutable</li>
* <li>comparable</li>
* <li>must implement {@code equals/hashCode}, hereby considering
* <ul>
* <li>Implementation type
* <li>CurrencyUnit
* <li>Numeric value.
* </ul>
* This also means that two different implementations types with the same currency and numeric value
* are NOT equal.</li>
* </ul>
* <p>
*
* @author Anatole Tresch
* @author Werner Keil
* @version 1.1
* @see #with(MonetaryOperator)
*/
public interface MonetaryAmount extends CurrencySupplier, NumberSupplier, Comparable<MonetaryAmount>{
/**
* Returns the {@link MonetaryContext} of this {@code MonetaryAmount}. The
* {@link MonetaryContext} provides additional information about the numeric representation and
* the numeric capabilities. This information can be used by code to determine situations where
* {@code MonetaryAmount} instances must be converted to avoid implicit truncation, which can
* lead to invalid results.
*
* @return the {@link MonetaryContext} of this {@code MonetaryAmount}, never {@code null} .
*/
MonetaryContext getContext();
/**
* Queries this monetary amount for a value.
* <p>
* This queries this amount using the specified query strategy object.
* <p>
* Implementations must ensure that no observable state is altered when this read-only method is
* invoked.
*
* @param <R> the type of the result
* @param query the query to invoke, not null
* @return the query result, null may be returned (defined by the query)
*/
default <R> R query(MonetaryQuery<R> query){
return query.queryFrom(this);
}
/**
* Returns an operated object <b>of the same type</b> as this object with the operation made.
* Hereby returning an instance <b>of the same type</b> is very important to prevent
* uncontrolled mixup of implementations. Switching between implementations is still easily
* possible, e.g. by using according {@link MonetaryAmountFactory} instances: <blockquote>
* <pre><code>
* // converting from Money to MyMoney
* Money m = ...;
* MonetartyAmountFactory<MyMoney> f = Monetary.queryAmountFactory(MyMoney.class);
* MyMoney myMoney = f.setAmount(m).of();
* </code></pre></blockquote>
* <p>
* This converts this monetary amount according to the rules of the specified operator. A
* typical operator will change the amount and leave the currency unchanged. A more complex
* operator might also change the currency.
* <p>
* Some example code indicating how and why this method is used:
* <blockquote>
* <pre><code>
* MonetaryAmount money = money.with(amountMultipliedBy(2));
* money = money.with(amountRoundedToNearestWholeUnit());
* </code></pre>
* </blockquote>
* <p>
* Hereby also the method signature on the implementation type must return the concrete type, to
* enable a fluent API, e.g.
*
* <blockquote>
* <pre><code>
* public final class MyMoney implements MonetaryAmount{
* ...
* public MyMoney with(MonetaryOperator operator){
* ...
* }
*
* ...
* }
* </code></pre>
* </blockquote>
*
* @param operator the operator to use, not null
* @return an object of the same type with the specified conversion made, not null
*/
default MonetaryAmount with(MonetaryOperator operator){
return operator.apply(this);
}
/**
* Creates a new {@code MonetaryAmountFactory}, returning the same implementation type Hereby
* this given amount is used as a template, so reusing the {@link CurrencyUnit}, its numeric
* value, the algorithmic implementation as well as the current {@link MonetaryContext}.
* <p>
* This method is used for creating a new amount result after having done calculations that are
* not directly mappable to the default monetary arithmetics, e.g. currency conversion.
*
* @return the new {@code MonetaryAmountFactory} with the given {@link MonetaryAmount} as its
* default values.
*/
MonetaryAmountFactory<? extends MonetaryAmount> getFactory();
/**
* Compares two instances of {@link MonetaryAmount}, hereby ignoring non significant trailing
* zeroes and different numeric capabilities.
*
* @param amount the {@code MonetaryAmount} to be compared with this instance.
* @return {@code true} if {@code amount > this}.
* @throws MonetaryException if the amount's currency is not equal to the currency of this instance.
*/
boolean isGreaterThan(MonetaryAmount amount);
/**
* Compares two instances of {@link MonetaryAmount}, hereby ignoring non significant trailing
* zeroes and different numeric capabilities.
*
* @param amount the {@link MonetaryAmount} to be compared with this instance.
* @return {@code true} if {@code amount >= this}.
* @throws MonetaryException if the amount's currency is not equal to the currency of this instance.
*/
boolean isGreaterThanOrEqualTo(MonetaryAmount amount);
/**
* Compares two instances of {@link MonetaryAmount}, hereby ignoring non significant trailing
* zeroes and different numeric capabilities.
*
* @param amount the {@link MonetaryAmount} to be compared with this instance.
* @return {@code true} if {@code amount < this}.
* @throws MonetaryException if the amount's currency is not equal to the currency of this instance.
*/
boolean isLessThan(MonetaryAmount amount);
/**
* Compares two instances of {@link MonetaryAmount}, hereby ignoring non significant trailing
* zeroes and different numeric capabilities.
*
* @param amt the {@link MonetaryAmount} to be compared with this instance.
* @return {@code true} if {@code amount <= this}.
* @throws MonetaryException if the amount's currency is not equal to the currency of this instance.
*/
boolean isLessThanOrEqualTo(MonetaryAmount amt);
/**
* Compares two instances of {@link MonetaryAmount}, hereby ignoring non significant trailing
* zeroes and different numeric capabilities.
*
* @param amount the {@link MonetaryAmount} to be compared with this instance.
* @return {@code true} if {@code amount == this}.
* @throws MonetaryException if the amount's currency is not equal to the currency of this instance.
*/
boolean isEqualTo(MonetaryAmount amount);
/**
* Checks if a {@code MonetaryAmount} is negative.
*
* @return {@code true} if {@link #signum()} < 0.
*/
default boolean isNegative(){
return signum() < 0;
}
/**
* Checks if a {@code MonetaryAmount} is negative or zero.
*
* @return {@code true} if {@link #signum()} <= 0.
*/
default boolean isNegativeOrZero(){
return signum() <= 0;
}
/**
* Checks if a {@code MonetaryAmount} is positive.
*
* @return {@code true} if {@link #signum()} > 0.
*/
default boolean isPositive(){
return signum() > 0;
}
/**
* Checks if a {@code MonetaryAmount} is positive or zero.
*
* @return {@code true} if {@link #signum()} >= 0.
*/
default boolean isPositiveOrZero(){
return signum() >= 0;
}
/**
* Checks if an {@code MonetaryAmount} is zero.
*
* @return {@code true} if {@link #signum()} == 0.
*/
default boolean isZero(){
return signum() == 0;
}
/**
* Returns the signum function of this {@code MonetaryAmount}.
*
* @return -1, 0, or 1 as the value of this {@code MonetaryAmount} is negative, zero, or
* positive.
*/
int signum();
/**
* Returns a {@code MonetaryAmount} whose value is <code>this + augend</code>, and whose scale is <code>max(this.getContext().getMaxScale(),
* augend.getContext().getMaxScale())</code>.
*
* @param augend value to be added to this {@code MonetaryAmount}.
* @return {@code this + augend}
* @throws ArithmeticException if the result exceeds the numeric capabilities of this implementation class, i.e.
* the {@link MonetaryContext} cannot be adapted as required.
*/
MonetaryAmount add(MonetaryAmount augend);
/**
* Returns a {@code MonetaryAmount} whose value is <code>this -
* amount</code>, and whose scale is <code>max(this.getContext().getMaxScale(),
* subtrahend.getContext().getMaxScale()</code>.
*
* @param subtrahend value to be subtracted from this {@code MonetaryAmount}.
* @return {@code this - subtrahend}
* @throws ArithmeticException if the result exceeds the numeric capabilities of this implementation class, i.e.
* the {@link MonetaryContext} cannot be adapted as required.
*/
MonetaryAmount subtract(MonetaryAmount subtrahend);
/**
* Returns a {@code MonetaryAmount} whose value is <code>(this ×
* multiplicand)</code>, and whose scale is <code>this.getContext().getMaxScale() +
* multiplicand.getContext().getMaxScale()</code>.
*
* @param multiplicand value to be multiplied by this {@code MonetaryAmount}.
* @return {@code this * multiplicand}
* @throws ArithmeticException if the result exceeds the numeric capabilities of this implementation class, i.e.
* the {@link MonetaryContext} cannot be adapted as required.
*/
MonetaryAmount multiply(long multiplicand);
/**
* Returns a {@code MonetaryAmount} whose value is <code>(this ×
* multiplicand)</code>, and whose scale is <code>this.getContext().getMaxScale() +
* multiplicand.getContext().getMaxScale()</code>.
* By default the input value's scale will be rounded to
* accommodate the format capabilities, and no {@link java.lang.ArithmeticException}
* is thrown if the input number's scale exceeds the capabilities.
*
* @param multiplicand value to be multiplied by this {@code MonetaryAmount}. If the multiplicand's scale exceeds
* the
* capabilities of the implementation, it may be rounded implicitly.
* @return {@code this * multiplicand}
* @throws ArithmeticException if the result exceeds the numeric capabilities of this implementation class, i.e.
* the {@link MonetaryContext} cannot be adapted as required.
*/
MonetaryAmount multiply(double multiplicand);
/**
* Returns a {@code MonetaryAmount} whose value is <code>(this ×
* multiplicand)</code>, and whose scale is <code>this.getContext().getMaxScale() +
* multiplicand.getContext().getMaxScale()</code>.
*
* @param multiplicand value to be multiplied by this {@code MonetaryAmount}. If the multiplicand's scale exceeds
* the
* capabilities of the implementation, it may be rounded implicitly.
* @return {@code this * multiplicand}
* @throws ArithmeticException if the result exceeds the numeric capabilities of this implementation class, i.e.
* the {@link MonetaryContext} cannot be adapted as required.
*/
MonetaryAmount multiply(Number multiplicand);
/**
* Returns a {@code MonetaryAmount} whose value is <code>this /
* divisor</code>, and whose preferred scale is <code>this.getContext().getMaxScale() -
* divisor.getContext().getMaxScale()</code>; if the exact quotient cannot be represented an {@code ArithmeticException}
* is thrown.
*
* @param divisor value by which this {@code MonetaryAmount} is to be divided.
* @return {@code this / divisor}
* @throws ArithmeticException if the exact quotient does not have a terminating decimal expansion, or if the
* result exceeds the numeric capabilities of this implementation class, i.e. the
* {@link MonetaryContext} cannot be adapted as required.
*/
MonetaryAmount divide(long divisor);
/**
* Returns a {@code MonetaryAmount} whose value is <code>this /
* divisor</code>, and whose preferred scale is <code>this.getContext().getMaxScale() -
* divisor.getContext().getMaxScale()</code>; if the exact quotient cannot be represented an {@code ArithmeticException}
* is thrown.
*
* @param divisor value by which this {@code MonetaryAmount} is to be divided.
* @return {@code this / divisor}
* @throws ArithmeticException if the exact quotient does not have a terminating decimal expansion, or if the
* result exceeds the numeric capabilities of this implementation class, i.e. the
* {@link MonetaryContext} cannot be adapted as required.
*/
MonetaryAmount divide(double divisor);
/**
* Returns a {@code MonetaryAmount} whose value is <code>this /
* divisor</code>, and whose preferred scale is <code>this.getContext().getMaxScale() -
* divisor.getContext().getMaxScale()</code>; if the exact quotient cannot be represented an {@code ArithmeticException}
* is thrown.
*
* @param divisor value by which this {@code MonetaryAmount} is to be divided.
* @return {@code this / divisor}
* @throws ArithmeticException if the exact quotient does not have a terminating decimal expansion, or if the
* result exceeds the numeric capabilities of this implementation class, i.e. the
* {@link MonetaryContext} cannot be adapted as required.
*/
MonetaryAmount divide(Number divisor);
/**
* Returns a {@code MonetaryAmount} whose value is <code>this % divisor</code>.
*
* <p>
* The remainder is given by
* <code>this.subtract(this.divideToIntegralValue(divisor).multiply(divisor)</code> . Note that this
* is not the modulo operation (the result can be negative).
*
* @param divisor value by which this {@code MonetaryAmount} is to be divided.
* @return {@code this % divisor}.
* @throws ArithmeticException if {@code divisor==0}, or if the result exceeds the numeric capabilities of this
* implementation class, i.e. the {@link MonetaryContext} cannot be adapted as
* required.
*/
MonetaryAmount remainder(long divisor);
/**
* Returns a {@code MonetaryAmount} whose value is <code>this % divisor</code>.
*
* <p>
* The remainder is given by
* <code>this.subtract(this.divideToIntegralValue(divisor).multiply(divisor)</code> . Note that this
* is not the modulo operation (the result can be negative).
*
* @param divisor value by which this {@code MonetaryAmount} is to be divided.
* @return {@code this % divisor}.
* @throws ArithmeticException if {@code divisor==0}, or if the result exceeds the numeric capabilities of this
* implementation class, i.e. the {@link MonetaryContext} cannot be adapted as
* required.
*/
MonetaryAmount remainder(double divisor);
/**
* Returns a {@code MonetaryAmount} whose value is <code>this % divisor</code>.
*
* <p>
* The remainder is given by
* <code>this.subtract(this.divideToIntegralValue(divisor).multiply(divisor)</code> . Note that this
* is not the modulo operation (the result can be negative).
*
* @param divisor value by which this {@code MonetaryAmount} is to be divided.
* @return {@code this % divisor}.
* @throws ArithmeticException if {@code divisor==0}, or if the result exceeds the numeric capabilities of this
* implementation class, i.e. the {@link MonetaryContext} cannot be adapted as
* required.
*/
MonetaryAmount remainder(Number divisor);
/**
* Returns a two-element {@code MonetaryAmount} array containing the result of
* {@code divideToIntegralValue} followed by the result of {@code remainder} on the two
* operands.
*
* <p>
* Note that if both the integer quotient and remainder are needed, this method is faster than
* using the {@code divideToIntegralValue} and {@code remainder} methods separately because the
* division need only be carried out once.
*
* @param divisor value by which this {@code MonetaryAmount} is to be divided, and the remainder
* computed.
* @return a two element {@code MonetaryAmount} array: the quotient (the result of
* {@code divideToIntegralValue}) is the initial element and the remainder is the final
* element.
* @throws ArithmeticException if {@code divisor==0}, or if the result exceeds the numeric capabilities of this
* implementation class, i.e. the {@link MonetaryContext} cannot be adapted as
* required.
* @see #divideToIntegralValue(long)
* @see #remainder(long)
*/
MonetaryAmount[] divideAndRemainder(long divisor);
/**
* Returns a two-element {@code MonetaryAmount} array containing the result of
* {@code divideToIntegralValue} followed by the result of {@code remainder} on the two
* operands.
*
* <p>
* Note that if both the integer quotient and remainder are needed, this method is faster than
* using the {@code divideToIntegralValue} and {@code remainder} methods separately because the
* division need only be carried out once.
*
* @param divisor value by which this {@code MonetaryAmount} is to be divided, and the remainder
* computed.
* @return a two element {@code MonetaryAmount} array: the quotient (the result of
* {@code divideToIntegralValue}) is the initial element and the remainder is the final
* element.
* @throws ArithmeticException if {@code divisor==0}, or if the result exceeds the numeric capabilities of this
* implementation class, i.e. the {@link MonetaryContext} cannot be adapted as
* required.
* @see #divideToIntegralValue(double)
* @see #remainder(double)
*/
MonetaryAmount[] divideAndRemainder(double divisor);
/**
* Returns a two-element {@code MonetaryAmount} array containing the result of
* {@code divideToIntegralValue} followed by the result of {@code remainder} on the two
* operands.
*
* <p>
* Note that if both the integer quotient and remainder are needed, this method is faster than
* using the {@code divideToIntegralValue} and {@code remainder} methods separately because the
* division need only be carried out once.
*
* @param divisor value by which this {@code MonetaryAmount} is to be divided, and the remainder
* computed.
* @return a two element {@code MonetaryAmount} array: the quotient (the result of
* {@code divideToIntegralValue}) is the initial element and the remainder is the final
* element.
* @throws ArithmeticException if {@code divisor==0}, or if the result exceeds the numeric capabilities of this
* implementation class, i.e. the {@link MonetaryContext} cannot be adapted as
* required.
* @see #divideToIntegralValue(Number)
* @see #remainder(Number)
*/
MonetaryAmount[] divideAndRemainder(Number divisor);
/**
* Returns a {@code MonetaryAmount} whose value is the integer part of the quotient
* <code>this / divisor</code> rounded down. The preferred scale of the result is
* <code>this.getContext().getMaxScale() -
* divisor.getContext().getMaxScale()</code>.
*
* @param divisor value by which this {@code BigDecimal} is to be divided.
* @return The integer part of {@code this / divisor}.
* @throws ArithmeticException if {@code divisor==0}
* @see java.math.BigDecimal#divideToIntegralValue(java.math.BigDecimal)
*/
MonetaryAmount divideToIntegralValue(long divisor);
/**
* Returns a {@code MonetaryAmount} whose value is the integer part of the quotient
* <code>this / divisor</code> rounded down. The preferred scale of the result is
* <code>this.getContext().getMaxScale() - divisor.getContext().getMaxScale()</code>.
*
* @param divisor value by which this {@code BigDecimal} is to be divided.
* @return The integer part of {@code this / divisor}.
* @throws ArithmeticException if {@code divisor==0}
* @see java.math.BigDecimal#divideToIntegralValue(java.math.BigDecimal)
*/
MonetaryAmount divideToIntegralValue(double divisor);
/**
* Returns a {@code MonetaryAmount} whose value is the integer part of the quotient
* <code>this / divisor</code> rounded down. The preferred scale of the result is
* <code>this.getContext().getMaxScale() -
* divisor.getContext().getMaxScale()</code>.
*
* @param divisor value by which this {@code BigDecimal} is to be divided.
* @return The integer part of {@code this / divisor}.
* @throws ArithmeticException if {@code divisor==0}
* @see java.math.BigDecimal#divideToIntegralValue(java.math.BigDecimal)
*/
MonetaryAmount divideToIntegralValue(Number divisor);
/**
* Returns a {@code MonetaryAmount} whose numerical value is equal to ( {@code this} *
* 10<sup>n</sup>). The scale of the result is <code>this.getContext().getMaxScale() - n</code>.
*
* @param power the power.
* @return the calculated amount value.
* @throws ArithmeticException if the scale would be outside the range of a 32-bit integer, or if the result
* exceeds the numeric capabilities of this implementation class, i.e. the
* {@link MonetaryContext} cannot be adapted as required.
*/
MonetaryAmount scaleByPowerOfTen(int power);
/**
* Returns a {@code MonetaryAmount} whose value is the absolute value of this
* {@code MonetaryAmount}, and whose scale is {@code this.getContext().getMaxScale()}.
*
* @return <code>abs(this</code>
*/
MonetaryAmount abs();
/**
* Returns a {@code MonetaryAmount} whose value is <code>-this</code>, and whose scale is
* {@code this.getContext().getMaxScale()}, with rounding according to the context settings.
*
* @throws ArithmeticException if rounding fails.
* @return {@code -this}, rounded as necessary.
* @see java.math.BigDecimal#negate()
*/
MonetaryAmount negate();
/**
* Returns a {@code MonetaryAmount} whose value is <code>+this</code>.
*
* <p>This method, which simply returns this {@code MonetaryAmount}
* is included for symmetry with the unary minus method {@link #negate()}.
*
* @return {@code this}.
* @see #negate()
* @see java.math.BigDecimal#plus()
*/
MonetaryAmount plus();
/**
* Returns a {@code MonetaryAmount} which is numerically equal to this one but with any trailing
* zeros removed from the representation. For example, stripping the trailing zeros from the
* {@code MonetaryAmount} value {@code CHF 600.0}, which has [{@code BigInteger}, {@code scale}]
* components equals to [6000, 1], yields {@code 6E2} with [ {@code BigInteger}, {@code scale}]
* components equals to [6, -2]
*
* @return a numerically equal {@code MonetaryAmount} with any trailing zeros removed.
*/
MonetaryAmount stripTrailingZeros();
}