-
Notifications
You must be signed in to change notification settings - Fork 46
/
main.py
474 lines (421 loc) · 17.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import argparse
import os
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
import time
from dataloaders.kitti_loader import load_calib, input_options, KittiDepth
from metrics import AverageMeter, Result
import criteria
import helper
import vis_utils
from model import ENet
from model import PENet_C1_train
from model import PENet_C2_train
#from model import PENet_C4_train (Not Implemented)
from model import PENet_C1
from model import PENet_C2
from model import PENet_C4
parser = argparse.ArgumentParser(description='Sparse-to-Dense')
parser.add_argument('-n',
'--network-model',
type=str,
default="e",
choices=["e", "pe"],
help='choose a model: enet or penet'
)
parser.add_argument('--workers',
default=4,
type=int,
metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs',
default=100,
type=int,
metavar='N',
help='number of total epochs to run (default: 100)')
parser.add_argument('--start-epoch',
default=0,
type=int,
metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--start-epoch-bias',
default=0,
type=int,
metavar='N',
help='manual epoch number bias(useful on restarts)')
parser.add_argument('-c',
'--criterion',
metavar='LOSS',
default='l2',
choices=criteria.loss_names,
help='loss function: | '.join(criteria.loss_names) +
' (default: l2)')
parser.add_argument('-b',
'--batch-size',
default=1,
type=int,
help='mini-batch size (default: 1)')
parser.add_argument('--lr',
'--learning-rate',
default=1e-3,
type=float,
metavar='LR',
help='initial learning rate (default 1e-5)')
parser.add_argument('--weight-decay',
'--wd',
default=1e-6,
type=float,
metavar='W',
help='weight decay (default: 0)')
parser.add_argument('--print-freq',
'-p',
default=10,
type=int,
metavar='N',
help='print frequency (default: 10)')
parser.add_argument('--resume',
default='',
type=str,
metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--data-folder',
default='/data/dataset/kitti_depth/depth',
type=str,
metavar='PATH',
help='data folder (default: none)')
parser.add_argument('--data-folder-rgb',
default='/data/dataset/kitti_raw',
type=str,
metavar='PATH',
help='data folder rgb (default: none)')
parser.add_argument('--data-folder-save',
default='/data/dataset/kitti_depth/submit_test/',
type=str,
metavar='PATH',
help='data folder test results(default: none)')
parser.add_argument('-i',
'--input',
type=str,
default='rgbd',
choices=input_options,
help='input: | '.join(input_options))
parser.add_argument('--val',
type=str,
default="select",
choices=["select", "full"],
help='full or select validation set')
parser.add_argument('--jitter',
type=float,
default=0.1,
help='color jitter for images')
parser.add_argument('--rank-metric',
type=str,
default='rmse',
choices=[m for m in dir(Result()) if not m.startswith('_')],
help='metrics for which best result is saved')
parser.add_argument('-e', '--evaluate', default='', type=str, metavar='PATH')
parser.add_argument('-f', '--freeze-backbone', action="store_true", default=False,
help='freeze parameters in backbone')
parser.add_argument('--test', action="store_true", default=False,
help='save result kitti test dataset for submission')
parser.add_argument('--cpu', action="store_true", default=False, help='run on cpu')
#random cropping
parser.add_argument('--not-random-crop', action="store_true", default=False,
help='prohibit random cropping')
parser.add_argument('-he', '--random-crop-height', default=320, type=int, metavar='N',
help='random crop height')
parser.add_argument('-w', '--random-crop-width', default=1216, type=int, metavar='N',
help='random crop height')
#geometric encoding
parser.add_argument('-co', '--convolutional-layer-encoding', default="xyz", type=str,
choices=["std", "z", "uv", "xyz"],
help='information concatenated in encoder convolutional layers')
#dilated rate of DA-CSPN++
parser.add_argument('-d', '--dilation-rate', default="2", type=int,
choices=[1, 2, 4],
help='CSPN++ dilation rate')
args = parser.parse_args()
args.result = os.path.join('..', 'results')
args.use_rgb = ('rgb' in args.input)
args.use_d = 'd' in args.input
args.use_g = 'g' in args.input
args.val_h = 352
args.val_w = 1216
print(args)
cuda = torch.cuda.is_available() and not args.cpu
if cuda:
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
device = torch.device("cuda")
else:
device = torch.device("cpu")
print("=> using '{}' for computation.".format(device))
# define loss functions
depth_criterion = criteria.MaskedMSELoss() if (
args.criterion == 'l2') else criteria.MaskedL1Loss()
#multi batch
multi_batch_size = 1
def iterate(mode, args, loader, model, optimizer, logger, epoch):
actual_epoch = epoch - args.start_epoch + args.start_epoch_bias
block_average_meter = AverageMeter()
block_average_meter.reset(False)
average_meter = AverageMeter()
meters = [block_average_meter, average_meter]
# switch to appropriate mode
assert mode in ["train", "val", "eval", "test_prediction", "test_completion"], \
"unsupported mode: {}".format(mode)
if mode == 'train':
model.train()
lr = helper.adjust_learning_rate(args.lr, optimizer, actual_epoch, args)
else:
model.eval()
lr = 0
torch.cuda.empty_cache()
for i, batch_data in enumerate(loader):
dstart = time.time()
batch_data = {
key: val.to(device)
for key, val in batch_data.items() if val is not None
}
gt = batch_data[
'gt'] if mode != 'test_prediction' and mode != 'test_completion' else None
data_time = time.time() - dstart
pred = None
start = None
gpu_time = 0
#start = time.time()
#pred = model(batch_data)
#gpu_time = time.time() - start
#'''
if(args.network_model == 'e'):
start = time.time()
st1_pred, st2_pred, pred = model(batch_data)
else:
start = time.time()
pred = model(batch_data)
if(args.evaluate):
gpu_time = time.time() - start
#'''
depth_loss, photometric_loss, smooth_loss, mask = 0, 0, 0, None
# inter loss_param
st1_loss, st2_loss, loss = 0, 0, 0
w_st1, w_st2 = 0, 0
round1, round2, round3 = 1, 3, None
if(actual_epoch <= round1):
w_st1, w_st2 = 0.2, 0.2
elif(actual_epoch <= round2):
w_st1, w_st2 = 0.05, 0.05
else:
w_st1, w_st2 = 0, 0
if mode == 'train':
# Loss 1: the direct depth supervision from ground truth label
# mask=1 indicates that a pixel does not ground truth labels
depth_loss = depth_criterion(pred, gt)
if args.network_model == 'e':
st1_loss = depth_criterion(st1_pred, gt)
st2_loss = depth_criterion(st2_pred, gt)
loss = (1 - w_st1 - w_st2) * depth_loss + w_st1 * st1_loss + w_st2 * st2_loss
else:
loss = depth_loss
if i % multi_batch_size == 0:
optimizer.zero_grad()
loss.backward()
if i % multi_batch_size == (multi_batch_size-1) or i==(len(loader)-1):
optimizer.step()
print("loss:", loss, " epoch:", epoch, " ", i, "/", len(loader))
if mode == "test_completion":
str_i = str(i)
path_i = str_i.zfill(10) + '.png'
path = os.path.join(args.data_folder_save, path_i)
vis_utils.save_depth_as_uint16png_upload(pred, path)
if(not args.evaluate):
gpu_time = time.time() - start
# measure accuracy and record loss
with torch.no_grad():
mini_batch_size = next(iter(batch_data.values())).size(0)
result = Result()
if mode != 'test_prediction' and mode != 'test_completion':
result.evaluate(pred.data, gt.data, photometric_loss)
[
m.update(result, gpu_time, data_time, mini_batch_size)
for m in meters
]
if mode != 'train':
logger.conditional_print(mode, i, epoch, lr, len(loader),
block_average_meter, average_meter)
logger.conditional_save_img_comparison(mode, i, batch_data, pred,
epoch)
logger.conditional_save_pred(mode, i, pred, epoch)
avg = logger.conditional_save_info(mode, average_meter, epoch)
is_best = logger.rank_conditional_save_best(mode, avg, epoch)
if is_best and not (mode == "train"):
logger.save_img_comparison_as_best(mode, epoch)
logger.conditional_summarize(mode, avg, is_best)
return avg, is_best
def main():
global args
checkpoint = None
is_eval = False
if args.evaluate:
args_new = args
if os.path.isfile(args.evaluate):
print("=> loading checkpoint '{}' ... ".format(args.evaluate),
end='')
checkpoint = torch.load(args.evaluate, map_location=device)
#args = checkpoint['args']
args.start_epoch = checkpoint['epoch'] + 1
args.data_folder = args_new.data_folder
args.val = args_new.val
is_eval = True
print("Completed.")
else:
is_eval = True
print("No model found at '{}'".format(args.evaluate))
#return
elif args.resume: # optionally resume from a checkpoint
args_new = args
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}' ... ".format(args.resume),
end='')
checkpoint = torch.load(args.resume, map_location=device)
args.start_epoch = checkpoint['epoch'] + 1
args.data_folder = args_new.data_folder
args.val = args_new.val
print("Completed. Resuming from epoch {}.".format(
checkpoint['epoch']))
else:
print("No checkpoint found at '{}'".format(args.resume))
return
print("=> creating model and optimizer ... ", end='')
model = None
penet_accelerated = False
if (args.network_model == 'e'):
model = ENet(args).to(device)
elif (is_eval == False):
if (args.dilation_rate == 1):
model = PENet_C1_train(args).to(device)
elif (args.dilation_rate == 2):
model = PENet_C2_train(args).to(device)
elif (args.dilation_rate == 4):
model = PENet_C4(args).to(device)
penet_accelerated = True
else:
if (args.dilation_rate == 1):
model = PENet_C1(args).to(device)
penet_accelerated = True
elif (args.dilation_rate == 2):
model = PENet_C2(args).to(device)
penet_accelerated = True
elif (args.dilation_rate == 4):
model = PENet_C4(args).to(device)
penet_accelerated = True
if (penet_accelerated == True):
model.encoder3.requires_grad = False
model.encoder5.requires_grad = False
model.encoder7.requires_grad = False
model_named_params = None
model_bone_params = None
model_new_params = None
optimizer = None
if checkpoint is not None:
#print(checkpoint.keys())
if (args.freeze_backbone == True):
model.backbone.load_state_dict(checkpoint['model'])
else:
model.load_state_dict(checkpoint['model'], strict=False)
#optimizer.load_state_dict(checkpoint['optimizer'])
print("=> checkpoint state loaded.")
logger = helper.logger(args)
if checkpoint is not None:
logger.best_result = checkpoint['best_result']
del checkpoint
print("=> logger created.")
test_dataset = None
test_loader = None
if (args.test):
test_dataset = KittiDepth('test_completion', args)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=1,
shuffle=False,
num_workers=1,
pin_memory=True)
iterate("test_completion", args, test_loader, model, None, logger, 0)
return
val_dataset = KittiDepth('val', args)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=1,
shuffle=False,
num_workers=2,
pin_memory=True) # set batch size to be 1 for validation
print("\t==> val_loader size:{}".format(len(val_loader)))
if is_eval == True:
for p in model.parameters():
p.requires_grad = False
result, is_best = iterate("val", args, val_loader, model, None, logger,
args.start_epoch - 1)
return
if (args.freeze_backbone == True):
for p in model.backbone.parameters():
p.requires_grad = False
model_named_params = [
p for _, p in model.named_parameters() if p.requires_grad
]
optimizer = torch.optim.Adam(model_named_params, lr=args.lr, weight_decay=args.weight_decay, betas=(0.9, 0.99))
elif (args.network_model == 'pe'):
model_bone_params = [
p for _, p in model.backbone.named_parameters() if p.requires_grad
]
model_new_params = [
p for _, p in model.named_parameters() if p.requires_grad
]
model_new_params = list(set(model_new_params) - set(model_bone_params))
optimizer = torch.optim.Adam([{'params': model_bone_params, 'lr': args.lr / 10}, {'params': model_new_params}],
lr=args.lr, weight_decay=args.weight_decay, betas=(0.9, 0.99))
else:
model_named_params = [
p for _, p in model.named_parameters() if p.requires_grad
]
optimizer = torch.optim.Adam(model_named_params, lr=args.lr, weight_decay=args.weight_decay, betas=(0.9, 0.99))
print("completed.")
model = torch.nn.DataParallel(model)
# Data loading code
print("=> creating data loaders ... ")
if not is_eval:
train_dataset = KittiDepth('train', args)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
sampler=None)
print("\t==> train_loader size:{}".format(len(train_loader)))
print("=> starting main loop ...")
for epoch in range(args.start_epoch, args.epochs):
print("=> starting training epoch {} ..".format(epoch))
iterate("train", args, train_loader, model, optimizer, logger, epoch) # train for one epoch
# validation memory reset
for p in model.parameters():
p.requires_grad = False
result, is_best = iterate("val", args, val_loader, model, None, logger, epoch) # evaluate on validation set
for p in model.parameters():
p.requires_grad = True
if (args.freeze_backbone == True):
for p in model.module.backbone.parameters():
p.requires_grad = False
if (penet_accelerated == True):
model.module.encoder3.requires_grad = False
model.module.encoder5.requires_grad = False
model.module.encoder7.requires_grad = False
helper.save_checkpoint({ # save checkpoint
'epoch': epoch,
'model': model.module.state_dict(),
'best_result': logger.best_result,
'optimizer' : optimizer.state_dict(),
'args' : args,
}, is_best, epoch, logger.output_directory)
if __name__ == '__main__':
main()