From ab0380bab7067257a344827c01f3efdfb4b42fd6 Mon Sep 17 00:00:00 2001 From: Ali Caglayan Date: Mon, 8 Apr 2024 01:17:06 +0100 Subject: [PATCH] I-indexed coproducts in pType Signed-off-by: Ali Caglayan --- theories/Homotopy/Wedge.v | 45 +++++++++++++++++++++++++++++++++------ 1 file changed, 39 insertions(+), 6 deletions(-) diff --git a/theories/Homotopy/Wedge.v b/theories/Homotopy/Wedge.v index b0636683096..094899fe458 100644 --- a/theories/Homotopy/Wedge.v +++ b/theories/Homotopy/Wedge.v @@ -194,14 +194,14 @@ Proof. exact pt. Defined. +Definition fwedge_in' (I : Type) (X : I -> pType) + : forall i, X i $-> FamilyWedge I X + := fun i => Build_pMap _ _ (fun x => pushl (i; x)) (pglue pt). + (** We have an inclusion map [pushl : sig X -> FamilyWedge X]. When [I] is pointed, so is [sig X], and then this inclusion map is pointed. *) Definition fwedge_in (I : pType) (X : I -> pType) - : psigma (pointed_fam X) $-> FamilyWedge I X. -Proof. - snrapply Build_pMap. - - exact pushl. - - exact (pglue pt). -Defined. + : psigma (pointed_fam X) $-> FamilyWedge I X + := Build_pMap _ _ pushl (pglue pt). (** Recursion principle for the wedge of an indexed family of pointed types. *) Definition fwedge_rec (I : Type) (X : I -> pType) (Z : pType) @@ -230,6 +230,39 @@ Proof. - exact pconst. Defined. +Global Instance hascoproducts_ptype (I : Type) : HasCoproducts I pType. +Proof. + intros X. + snrapply Build_Coproduct. + - exact (FamilyWedge I X). + - exact (fwedge_in' I X). + - exact (fwedge_rec I X). + - intros Z f i. + snrapply Build_pHomotopy. + 1: reflexivity. + simpl. + apply moveL_pV. + apply equiv_1p_q1. + symmetry. + exact (Pushout_rec_beta_pglue Z _ (unit_name pt) (fun i => point_eq (f i)) _). + - intros Z f g h. + snrapply Build_pHomotopy. + + snrapply Pushout_ind. + * intros [i x]. + nrapply h. + * intros []. + exact (point_eq _ @ (point_eq _)^). + * intros i. + nrapply transport_paths_FlFr'. + lhs nrapply concat_p_pp. + apply moveR_pV. + rhs nrapply concat_pp_p. + apply moveL_pM. + symmetry. + exact (dpoint_eq (h i)). + + reflexivity. +Defined. + (** ** The pinch map on the suspension *) (** Given a suspension, there is a natural map from the suspension to the wedge of the suspension with itself. This is known as the pinch map.