diff --git a/Tuto-GUDHI-ConfRegions-PersDiag-datapoints.ipynb b/Tuto-GUDHI-ConfRegions-PersDiag-datapoints.ipynb index b47bb0e..f5a2d49 100644 --- a/Tuto-GUDHI-ConfRegions-PersDiag-datapoints.ipynb +++ b/Tuto-GUDHI-ConfRegions-PersDiag-datapoints.ipynb @@ -39,7 +39,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In this tutorial, we introduce confidence regions for persistence diagrams built on a set of data points. We present the subsampling approach of [Fasy et al. 2014 AoS](https://projecteuclid.org/download/pdfview_1/euclid.aos/1413810729). An alternative method is the bottleneck bootstrap method introduced in [Chazal etal. 2018](http://www.jmlr.org/papers/v18/15-484.html) and presented in this [notebook](Tuto-GUDHI-ConfRegions-PersDiag-BottleneckBootstrap.ipynb). See [this notebook](Tuto-GUDHI-persistence-diagrams.ipynb) for an introduction to persistence diagrams with Gudhi." + "In this tutorial, we introduce confidence regions for persistence diagrams built on a set of data points. We present the subsampling approach of [Fasy et al. 2014 AoS](https://projecteuclid.org/download/pdfview_1/euclid.aos/1413810729). An alternative method is the bottleneck bootstrap method introduced in [Chazal etal. 2018](http://www.jmlr.org/papers/v18/15-484.html) and presented in this [notebook](Tuto-GUDHI-ConfRegions-PersDiag-BottleneckBootstrap.ipynb). See [this notebook](https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-persistence-diagrams.ipynb) for an introduction to persistence diagrams with Gudhi." ] }, { diff --git a/Tuto-GUDHI-alpha-complex-visualization.ipynb b/Tuto-GUDHI-alpha-complex-visualization.ipynb index 6efeaeb..e8c64b7 100644 --- a/Tuto-GUDHI-alpha-complex-visualization.ipynb +++ b/Tuto-GUDHI-alpha-complex-visualization.ipynb @@ -27,7 +27,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We are going to [build a simplicial complex from a point cloud](Tuto-GUDHI-simplicial-complexes-from-data-points.ipynb). These points are randomly sampled from a 2-torus." + "We are going to [build a simplicial complex from a point cloud](https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-simplicial-complexes-from-data-points.ipynb). These points are randomly sampled from a 2-torus." ] }, { diff --git a/Tuto-GUDHI-persistence-diagrams.ipynb b/Tuto-GUDHI-persistence-diagrams.ipynb index 74f930b..3b61d3e 100644 --- a/Tuto-GUDHI-persistence-diagrams.ipynb +++ b/Tuto-GUDHI-persistence-diagrams.ipynb @@ -83,7 +83,7 @@ "\n", "Correlation matrices between residues can be found at this [link](https://www.researchgate.net/publication/301543862_corr). We are greatful to the authors for sharing data.\n", "\n", - "We start from the Vietoris-Rips filtrations of the Protein binding distance matrices. See this [previous tutorial](Tuto-GUDHI-simplicial-complexes-from-distance-matrix.ipynb) for more details on how to build the Rips complex." + "We start from the Vietoris-Rips filtrations of the Protein binding distance matrices. See this [previous tutorial](https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-simplicial-complexes-from-distance-matrix.ipynb) for more details on how to build the Rips complex." ] }, { @@ -144,7 +144,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We build the Vietoris-Rips complex from the distance matrix `D0`. See this [notebook](Tuto-GUDHI-simplicial-complexes-from-distance-matrix.ipynb) for more details." + "We build the Vietoris-Rips complex from the distance matrix `D0`. See this [notebook](https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-simplicial-complexes-from-distance-matrix.ipynb) for more details." ] }, { diff --git a/Tuto-GUDHI-simplicial-complexes-from-data-points.ipynb b/Tuto-GUDHI-simplicial-complexes-from-data-points.ipynb index b68144d..ccd1c5a 100644 --- a/Tuto-GUDHI-simplicial-complexes-from-data-points.ipynb +++ b/Tuto-GUDHI-simplicial-complexes-from-data-points.ipynb @@ -176,7 +176,7 @@ "\n", "Definition of diameter here?\n", "\n", - "Vietoris-Rips complexes can be defined for any metric space from the matrix of pairwise distances (see this [notebook](Tuto-GUDHI-simplicial-complexes-from-distance-matrix.ipynb)).\n", + "Vietoris-Rips complexes can be defined for any metric space from the matrix of pairwise distances (see this [notebook](https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-simplicial-complexes-from-distance-matrix.ipynb)).\n", "\n", "In order to efficiently compute an $\\alpha$-Rips complex, one can start by building a topological graph with:\n", "\n",