-
Notifications
You must be signed in to change notification settings - Fork 587
/
math_ntt.go
516 lines (463 loc) · 14.2 KB
/
math_ntt.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
package copypasta
import (
"math/big"
"math/bits"
"slices"
)
/* NTT: number-theoretic transform 快速数论变换
https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general)#Number-theoretic_transform
从傅里叶变换到 998244353 https://www.bilibili.com/read/cv2289955/
硬核理解快速数论变换 https://www.bilibili.com/video/BV1eT411M7Fp/
NTT 和 FFT 类似,下面的实现在 FFT 代码的基础上稍微修改了下
https://oi-wiki.org/math/poly/ntt/
包含应用及习题 https://cp-algorithms.com/algebra/fft.html#toc-tgt-6
常用素数及原根 http://blog.miskcoo.com/2014/07/fft-prime-table
2281701377 = 17*2^27+1, g = 3, invG = 760567126
1004535809 = 479*2^21+1, g = 3, invG = 334845270
998244353 = 119*2^23+1, g = 3, invG = 332748118
167772161 = 5*2^25+1, g = 3, invG = 55924054
P-1 包含大量因子 2,便于分治
模数任意的解决方案 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transform
任意模数 NTT https://www.luogu.com.cn/problem/P4245
NTT vs FFT:对于模板题 https://www.luogu.com.cn/problem/P3803 NTT=1.98s(750ms) FFT=3.63s(1.36s) 括号内是最后一个 case 的运行时间
卡常技巧
A modulo multiplication method that is 2x faster than compiler implementation https://codeforces.com/blog/entry/111566
*/
/* 多项式全家桶
【推荐】https://www.luogu.com.cn/blog/command-block/ntt-yu-duo-xiang-shi-quan-jia-tong
https://blog.orzsiyuan.com/search/%E5%A4%9A%E9%A1%B9%E5%BC%8F/2/
模板 https://blog.orzsiyuan.com/archives/Polynomial-Template/
jiangly 模板 https://atcoder.jp/contests/arc163/submissions/45737810
https://blog.csdn.net/weixin_43973966/article/details/88996932
https://cp-algorithms.com/algebra/polynomial.html
http://blog.miskcoo.com/2015/05/polynomial-inverse
http://blog.miskcoo.com/2015/05/polynomial-division
http://blog.miskcoo.com/2015/05/polynomial-multipoint-eval-and-interpolation
关于优化形式幂级数计算的 Newton 法的常数 http://negiizhao.blog.uoj.ac/blog/4671
todo 卡常板子 https://judge.yosupo.jp/submission/65290
从拉插到快速插值求值 https://www.luogu.com.cn/blog/command-block/zong-la-cha-dao-kuai-su-cha-zhi-qiu-zhi
浅谈多项式复合和拉格朗日反演 https://www.luogu.com.cn/blog/your-alpha1022/qian-tan-duo-xiang-shi-fu-ge-hu-la-ge-lang-ri-fan-yan
快速阶乘算法 https://www.luogu.com.cn/problem/P5282
调和级数求和 https://www.luogu.com.cn/problem/P5702
具体的题目见下面的生成函数部分
*/
/* 分治 FFT
todo 半在线卷积小记 https://www.luogu.com.cn/blog/command-block/ban-zai-xian-juan-ji-xiao-ji
CDQ FFT 半在线卷积的O(nlog^2/loglogn)算法 https://www.qaq-am.com/cdqFFT/
模板题 https://www.luogu.com.cn/problem/P4721
https://atcoder.jp/contests/abc267/tasks/abc267_h
*/
/* GF: generating function 生成函数/母函数/多项式计数
https://en.wikipedia.org/wiki/Generating_function
todo generatingfunctionology https://www2.math.upenn.edu/~wilf/gfologyLinked2.pdf
普通生成函数 OGF
指数生成函数 EGF 入门题 https://codeforces.com/problemset/problem/891/E 3000
狄利克雷生成函数 DGFs
todo 【推荐】https://www.luogu.com.cn/blog/command-block/sheng-cheng-han-shuo-za-tan
【推荐】数数入门 https://www.luogu.com.cn/blog/CJL/conut-ru-men
https://www.bilibili.com/video/BV1Zg411T7Eq
https://oi-wiki.org/math/gen-func/intro/
OGF 展开方式 https://oi-wiki.org/math/gen-func/ogf/#_5
【数学理论】浅谈 OI 中常用的一些生成函数运算的合法与正确性 https://rqy.moe/Math/gf_correct/ https://www.luogu.com.cn/blog/lx-2003/gf-correct
一些常见数列的生成函数推导 https://www.luogu.com.cn/blog/nederland/girl-friend
狄利克雷相关(含 DGFs)https://www.luogu.com.cn/blog/command-block/gcd-juan-ji-xiao-ji
狄利克雷生成函数浅谈 https://www.luogu.com.cn/blog/gxy001/di-li-ke-lei-sheng-cheng-han-shuo-qian-tan
生成函数在背包问题中的应用 https://zykykyk.github.io/post/%E7%94%9F%E6%88%90%E5%87%BD%E6%95%B0%E5%9C%A8%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8/
生成函数的背包计数问题 https://www.cnblogs.com/ErkkiErkko/p/10838697.html
OGFs, EGFs, differentiation and Taylor shifts https://codeforces.com/blog/entry/99646
A problem collection of ODE and differential technique https://codeforces.com/blog/entry/76447
Optimal Algorithm on Polynomial Composite Set Power Series https://codeforces.com/blog/entry/92183
On linear recurrences and the math behind them https://codeforces.com/blog/entry/100158
载谭 Binomial Sum:多项式复合、插值与泰勒展开 https://www.luogu.com.cn/blog/EntropyIncreaser/zai-tan-binomial-sum-duo-xiang-shi-fu-ge-cha-zhi-yu-tai-lei-zhan-kai
How to composite (some) polynomials faster? https://codeforces.com/blog/entry/126124
炫酷反演魔术 https://www.luogu.com.cn/blog/command-block/xuan-ku-fan-yan-mo-shu
反演魔术:反演原理及二项式反演 http://blog.miskcoo.com/2015/12/inversion-magic-binomial-inversion
Min-Max容斥
https://www.luogu.com.cn/blog/Troverld/Min-Max-Inclusion-and-Exclusion
https://www.luogu.com.cn/blog/command-block/min-max-rong-chi-xiao-ji
https://lnrbhaw.github.io/2019/01/05/Min-Max%E5%AE%B9%E6%96%A5%E5%AD%A6%E4%B9%A0%E7%AC%94%E8%AE%B0/
拉格朗日反演 扩展拉格朗日反演
证明 https://www.cnblogs.com/judge/p/10652738.html
多项式拉格朗日反演与复合逆 https://blog.csdn.net/C20190102/article/details/107279319
点双连通图计数 https://www.luogu.com.cn/problem/P5827
边双连通图计数 https://www.luogu.com.cn/problem/P5828
todo 多项式题单 https://www.luogu.com.cn/training/1008
https://codeforces.com/problemset/problem/958/F3
todo https://codeforces.com/contest/438/problem/E
todo https://leetcode.cn/contest/hust_1024_2023/problems/kzxnaX/
https://leetcode.cn/circle/discuss/NEDYEC/
https://oi-wiki.org/math/combinatorics/partition/#%E4%BA%94%E8%BE%B9%E5%BD%A2%E6%95%B0%E5%AE%9A%E7%90%86
https://leetcode.cn/circle/discuss/Qvv72W/view/DJalmi/
*/
const P = 998244353
func nttPow(x, n int) (res int) {
res = 1
for ; n > 0; n /= 2 {
if n%2 > 0 {
res = res * x % P
}
x = x * x % P
}
return
}
var omega, omegaInv [31]int // 多开一点空间
func init() {
const g, invG = 3, 332748118
for i := 1; i < len(omega); i++ {
omega[i] = nttPow(g, (P-1)/(1<<i))
omegaInv[i] = nttPow(invG, (P-1)/(1<<i))
}
}
type ntt struct {
n int
invN int
}
func newNTT(n int) ntt { return ntt{n, nttPow(n, P-2)} }
// 注:下面 swap 的代码,另一种写法是初始化每个 i 对应的 j https://blog.csdn.net/Flag_z/article/details/99163939
// 由于不是性能瓶颈,实测对性能影响不大
func (t ntt) transform(a, omega []int) {
for i, j := 0, 0; i < t.n; i++ {
if i > j {
a[i], a[j] = a[j], a[i]
}
for l := t.n >> 1; ; l >>= 1 {
j ^= l
if j >= l {
break
}
}
}
for l, li := 2, 1; l <= t.n; l <<= 1 {
m := l >> 1
wn := omega[li]
li++
for st := 0; st < t.n; st += l {
b := a[st:]
for i, w := 0, 1; i < m; i++ {
d := b[m+i] * w % P
b[m+i] = (b[i] - d + P) % P
b[i] = (b[i] + d) % P
w = w * wn % P
}
}
}
}
func (t ntt) dft(a []int) {
t.transform(a, omega[:])
}
func (t ntt) idft(a []int) {
t.transform(a, omegaInv[:])
for i, v := range a {
a[i] = v * t.invN % P
}
}
type poly []int
func (a poly) resize(n int) poly {
b := make(poly, n)
copy(b, a)
return b
}
// 计算 A(x) 和 B(x) 的卷积 (convolution)
// c[k] = ∑a[i]*b[k-i], i=0..k
// 如果求 ∑a[i]*b[i],可以把 b 反转后再求卷积
// 入参出参都是次项从低到高的系数
// 模板题 https://judge.yosupo.jp/problem/convolution_mod
// https://www.luogu.com.cn/problem/P3803
// https://www.luogu.com.cn/problem/P1919
// https://atcoder.jp/contests/practice2/tasks/practice2_f
func (a poly) conv(b poly) poly {
n, m := len(a), len(b)
limit := 1 << bits.Len(uint(n+m-1))
A := a.resize(limit)
B := b.resize(limit)
t := newNTT(limit)
t.dft(A)
t.dft(B)
for i, v := range A {
A[i] = v * B[i] % P
}
t.idft(A)
return A[:n+m-1]
}
// 计算多个多项式的卷积
// 入参出参都是次项从低到高的系数
func polyConvNTTs(coefs []poly) poly {
n := len(coefs)
if n == 1 {
return coefs[0]
}
return polyConvNTTs(coefs[:n/2]).conv(polyConvNTTs(coefs[n/2:]))
}
func (a poly) reverse() poly {
slices.Reverse(a)
return a
}
func (a poly) reverseCopy() poly {
n := len(a)
b := make(poly, n)
for i, v := range a {
b[n-1-i] = v
}
return b
}
func (a poly) neg() poly {
b := make(poly, len(a))
for i, v := range a {
if v > 0 {
b[i] = P - v
}
}
return b
}
func (a poly) add(b poly) poly {
c := make(poly, len(a))
for i, v := range a {
c[i] = (v + b[i]) % P
}
return c
}
func (a poly) sub(b poly) poly {
c := make(poly, len(a))
for i, v := range a {
c[i] = (v - b[i] + P) % P
}
return c
}
func (a poly) mul(k int) poly {
k %= P
b := make(poly, len(a))
for i, v := range a {
b[i] = v * k % P
}
return b
}
func (a poly) lsh(k int) poly {
b := make(poly, len(a))
if k > len(a) {
return b
}
copy(b[k:], a)
return b
}
func (a poly) rsh(k int) poly {
b := make(poly, len(a))
if k > len(a) {
return b
}
copy(b, a[k:])
return b
}
func (a poly) derivative() poly {
n := len(a)
d := make(poly, n)
for i := 1; i < n; i++ {
d[i-1] = a[i] * i % P
}
return d
}
func (a poly) integral() poly {
n := len(a)
s := make(poly, n)
s[0] = 0 // C
// 线性求逆元,详见 math.go 中的 initAllInv
inv := make([]int, n)
inv[1] = 1
for i := 2; i < n; i++ {
inv[i] = (P - P/i) * inv[P%i] % P
}
for i := 1; i < n; i++ {
s[i] = a[i-1] * inv[i] % P
}
return s
}
// 多项式乘法逆 (mod x^n, 下同)
// 参考 https://blog.orzsiyuan.com/archives/Polynomial-Inversion/
// https://oi-wiki.org/math/poly/inv/
// 模板题 https://www.luogu.com.cn/problem/P4238
func (a poly) inv() poly {
n := len(a)
m := 1 << bits.Len(uint(n))
A := a.resize(m)
invA := make(poly, m)
invA[0] = nttPow(A[0], P-2)
for l := 2; l <= m; l <<= 1 {
ll := l << 1
b := A[:l].resize(ll)
iv := invA[:l].resize(ll)
t := newNTT(ll)
t.dft(b)
t.dft(iv)
for i, v := range iv {
b[i] = v * (2 - v*b[i]%P + P) % P
}
t.idft(b)
copy(invA, b[:l])
}
return invA[:n]
}
// 多项式除法
// https://blog.orzsiyuan.com/archives/Polynomial-Division-and-Modulo/
// https://oi-wiki.org/math/poly/div-mod/
// 模板题 https://www.luogu.com.cn/problem/P4512
func (a poly) div(b poly) poly {
k := len(a) - len(b) + 1
if k <= 0 {
return make(poly, 1)
}
A := a.reverseCopy().resize(k)
B := b.reverseCopy().resize(k)
return A.conv(B.inv())[:k].reverse()
}
// 多项式取模
func (a poly) mod(b poly) poly {
m := len(b)
return a[:m-1].sub(a.div(b).conv(b)[:m-1])
}
func (a poly) divmod(b poly) (quo, rem poly) {
m := len(b)
quo = a.div(b)
rem = a[:m-1].sub(quo.conv(b)[:m-1])
return
}
// 多项式开根
// 参考 https://blog.orzsiyuan.com/archives/Polynomial-Square-Root/
// https://oi-wiki.org/math/poly/sqrt/
// 模板题 https://www.luogu.com.cn/problem/P5205
// 模板题(二次剩余)https://www.luogu.com.cn/problem/P5277
func (a poly) sqrt() poly {
const inv2 = (P + 1) / 2
n := len(a)
m := 1 << bits.Len(uint(n))
A := a.resize(m)
rt := make(poly, m)
rt[0] = 1
if a[0] != 1 {
rt[0] = int(new(big.Int).ModSqrt(big.NewInt(int64(a[0])), big.NewInt(P)).Int64())
//if 2*rt[0] > P { // P5277 需要
// rt[0] = P - rt[0]
//}
}
for l := 2; l <= m; l <<= 1 {
ll := l << 1
b := A[:l].resize(ll)
r := rt[:l].resize(ll)
ir := rt[:l].inv().resize(ll)
t := newNTT(ll)
t.dft(b)
t.dft(r)
t.dft(ir)
for i, v := range r {
b[i] = (b[i] + v*v%P) * inv2 % P * ir[i] % P
}
t.idft(b)
copy(rt, b[:l])
}
return rt[:n]
}
// 多项式对数函数
// https://blog.orzsiyuan.com/archives/Polynomial-Natural-Logarithm/
// https://oi-wiki.org/math/poly/ln-exp/
// 模板题 https://www.luogu.com.cn/problem/P4725
func (a poly) ln() poly {
if a[0] != 1 {
panic(a[0])
}
return a.derivative().conv(a.inv())[:len(a)].integral()
}
// 多项式指数函数
// https://blog.orzsiyuan.com/archives/Polynomial-Exponential/
// https://oi-wiki.org/math/poly/ln-exp/
// 模板题 https://www.luogu.com.cn/problem/P4726
func (a poly) exp() poly {
if a[0] != 0 {
panic(a[0])
}
n := len(a)
m := 1 << bits.Len(uint(n))
A := a.resize(m)
e := make(poly, m)
e[0] = 1
for l := 2; l <= m; l <<= 1 {
b := e[:l].ln()
b[0]--
for i, v := range b {
b[i] = (A[i] - v + P) % P
}
copy(e, b.conv(e[:l])[:l])
}
return e[:n]
}
// 多项式幂函数
// https://blog.orzsiyuan.com/archives/Polynomial-Power/
// https://oi-wiki.org/math/poly/ln-exp/#_5
// 模板题 https://www.luogu.com.cn/problem/P5245
// 模板题(a[0] != 1)https://www.luogu.com.cn/problem/P5273
func (a poly) pow(k int) poly {
n := len(a)
if k >= n && a[0] == 0 {
return make(poly, n)
}
k1 := k % (P - 1)
k %= P
if a[0] == 1 {
return a.ln().mul(k).exp()
}
shift := 0
for ; shift < n && a[shift] == 0; shift++ {
}
if shift*k >= n {
return make(poly, n)
}
a = a.rsh(shift) // a[0] != 0
a.mul(nttPow(a[0], P-2)) // a[0] == 1
return a.ln().mul(k).exp().mul(nttPow(a[0], k1)).lsh(shift * k)
}
// 多项式三角函数
// 模意义下的单位根 i = w4 = g^((P-1)/4), 其中 g 为 P 的原根
// https://blog.orzsiyuan.com/archives/Polynomial-Trigonometric-Function/
// https://oi-wiki.org/math/poly/tri-func/
// 模板题 https://www.luogu.com.cn/problem/P5264
func (a poly) sincos() (sin, cos poly) {
if a[0] != 0 {
panic(a[0])
}
const i = 911660635 // pow(g, (P-1)/4)
const inv2i = 43291859 // pow(2*i, P-2)
const inv2 = (P + 1) / 2
e := a.mul(i).exp()
invE := e.inv()
sin = e.sub(invE).mul(inv2i)
cos = e.add(invE).mul(inv2)
return
}
func (a poly) tan() poly {
sin, cos := a.sincos()
return sin.conv(cos.inv())
}
// 多项式反三角函数
// https://oi-wiki.org/math/poly/inv-tri-func/
// 模板题 https://www.luogu.com.cn/problem/P5265
func (a poly) asin() poly {
if a[0] != 0 {
panic(a[0])
}
n := len(a)
b := a.conv(a)[:n].neg()
b[0] = 1
return a.derivative().conv(b.sqrt().inv())[:n].integral()
}
func (a poly) acos() poly {
return a.asin().neg()
}
func (a poly) atan() poly {
if a[0] != 0 {
panic(a[0])
}
n := len(a)
b := a.conv(a)[:n]
b[0] = 1
return a.derivative().conv(b.inv())[:n].integral()
}
// 多项式复合逆
// todo https://blog.csdn.net/weixin_43973966/article/details/88998646
// todo 模板题 https://www.luogu.com.cn/problem/P5809