-
Notifications
You must be signed in to change notification settings - Fork 704
/
mnn_yolo5face.cpp
213 lines (178 loc) · 6.63 KB
/
mnn_yolo5face.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//
// Created by DefTruth on 2022/1/16.
//
#include "mnn_yolo5face.h"
using mnncv::MNNYOLO5Face;
MNNYOLO5Face::MNNYOLO5Face(const std::string &_mnn_path, unsigned int _num_threads) :
BasicMNNHandler(_mnn_path, _num_threads)
{
initialize_pretreat();
}
inline void MNNYOLO5Face::initialize_pretreat()
{
pretreat = std::shared_ptr<MNN::CV::ImageProcess>(
MNN::CV::ImageProcess::create(
MNN::CV::BGR,
MNN::CV::RGB,
mean_vals, 3,
norm_vals, 3
)
);
}
inline void MNNYOLO5Face::transform(const cv::Mat &mat_rs)
{
pretreat->convert(mat_rs.data, input_width, input_height, mat_rs.step[0], input_tensor);
}
void MNNYOLO5Face::resize_unscale(const cv::Mat &mat, cv::Mat &mat_rs,
int target_height, int target_width,
YOLO5FaceScaleParams &scale_params)
{
if (mat.empty()) return;
int img_height = static_cast<int>(mat.rows);
int img_width = static_cast<int>(mat.cols);
mat_rs = cv::Mat(target_height, target_width, CV_8UC3,
cv::Scalar(0, 0, 0));
// scale ratio (new / old) new_shape(h,w)
float w_r = (float) target_width / (float) img_width;
float h_r = (float) target_height / (float) img_height;
float r = std::min(w_r, h_r);
// compute padding
int new_unpad_w = static_cast<int>((float) img_width * r); // floor
int new_unpad_h = static_cast<int>((float) img_height * r); // floor
int pad_w = target_width - new_unpad_w; // >=0
int pad_h = target_height - new_unpad_h; // >=0
int dw = pad_w / 2;
int dh = pad_h / 2;
// resize with unscaling
cv::Mat new_unpad_mat;
// cv::Mat new_unpad_mat = mat.clone(); // may not need clone.
cv::resize(mat, new_unpad_mat, cv::Size(new_unpad_w, new_unpad_h));
new_unpad_mat.copyTo(mat_rs(cv::Rect(dw, dh, new_unpad_w, new_unpad_h)));
// record scale params.
scale_params.ratio = r;
scale_params.dw = dw;
scale_params.dh = dh;
scale_params.flag = true;
}
void MNNYOLO5Face::detect(const cv::Mat &mat, std::vector<types::BoxfWithLandmarks> &detected_boxes_kps,
float score_threshold, float iou_threshold, unsigned int topk)
{
if (mat.empty()) return;
auto img_height = static_cast<float>(mat.rows);
auto img_width = static_cast<float>(mat.cols);
// resize & unscale
cv::Mat mat_rs;
YOLO5FaceScaleParams scale_params;
this->resize_unscale(mat, mat_rs, input_height, input_width, scale_params);
// 1. make input tensor
this->transform(mat_rs);
// 2. inference scores & boxes.
mnn_interpreter->runSession(mnn_session);
auto output_tensors = mnn_interpreter->getSessionOutputAll(mnn_session);
// 3. rescale & exclude.
std::vector<types::BoxfWithLandmarks> bbox_kps_collection;
this->generate_bboxes_kps(scale_params, bbox_kps_collection, output_tensors,
score_threshold, img_height, img_width);
// 4. hard nms with topk.
this->nms_bboxes_kps(bbox_kps_collection, detected_boxes_kps, iou_threshold, topk);
}
void MNNYOLO5Face::generate_bboxes_kps(const YOLO5FaceScaleParams &scale_params,
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection,
const std::map<std::string, MNN::Tensor *> &output_tensors,
float score_threshold, float img_height, float img_width)
{
auto device_output_pred = output_tensors.at("output");
MNN::Tensor host_output_pred(device_output_pred, device_output_pred->getDimensionType());
device_output_pred->copyToHostTensor(&host_output_pred);
auto output_dims = host_output_pred.shape();
const unsigned int num_anchors = output_dims.at(1); // n = ?
const float *output_ptr = host_output_pred.host<float>();
float r_ = scale_params.ratio;
int dw_ = scale_params.dw;
int dh_ = scale_params.dh;
bbox_kps_collection.clear();
unsigned int count = 0;
for (unsigned int i = 0; i < num_anchors; ++i)
{
const float *row_ptr = output_ptr + i * 16;
float obj_conf = row_ptr[4];
if (obj_conf < score_threshold) continue; // filter first.
float cls_conf = row_ptr[15];
if (cls_conf < score_threshold) continue; // face score.
// bounding box
const float *offsets = row_ptr;
float cx = offsets[0];
float cy = offsets[1];
float w = offsets[2];
float h = offsets[3];
types::BoxfWithLandmarks box_kps;
float x1 = ((cx - w / 2.f) - (float) dw_) / r_;
float y1 = ((cy - h / 2.f) - (float) dh_) / r_;
float x2 = ((cx + w / 2.f) - (float) dw_) / r_;
float y2 = ((cy + h / 2.f) - (float) dh_) / r_;
box_kps.box.x1 = std::max(0.f, x1);
box_kps.box.y1 = std::max(0.f, y1);
box_kps.box.x2 = std::min(img_width - 1.f, x2);
box_kps.box.y2 = std::min(img_height - 1.f, y2);
box_kps.box.score = cls_conf;
box_kps.box.label = 1;
box_kps.box.label_text = "face";
box_kps.box.flag = true;
// landmarks
const float *kps_offsets = row_ptr + 5;
for (unsigned int j = 0; j < 10; j += 2)
{
cv::Point2f kps;
float kps_x = (kps_offsets[j] - (float) dw_) / r_;
float kps_y = (kps_offsets[j + 1] - (float) dh_) / r_;
kps.x = std::min(std::max(0.f, kps_x), img_width - 1.f);
kps.y = std::min(std::max(0.f, kps_y), img_height - 1.f);
box_kps.landmarks.points.push_back(kps);
}
box_kps.landmarks.flag = true;
box_kps.flag = true;
bbox_kps_collection.push_back(box_kps);
count += 1; // limit boxes for nms.
if (count > max_nms)
break;
}
#if LITEMNN_DEBUG
std::cout << "generate_bboxes_kps num: " << bbox_kps_collection.size() << "\n";
#endif
}
void MNNYOLO5Face::nms_bboxes_kps(std::vector<types::BoxfWithLandmarks> &input,
std::vector<types::BoxfWithLandmarks> &output,
float iou_threshold, unsigned int topk)
{
if (input.empty()) return;
std::sort(
input.begin(), input.end(),
[](const types::BoxfWithLandmarks &a, const types::BoxfWithLandmarks &b)
{ return a.box.score > b.box.score; }
);
const unsigned int box_num = input.size();
std::vector<int> merged(box_num, 0);
unsigned int count = 0;
for (unsigned int i = 0; i < box_num; ++i)
{
if (merged[i]) continue;
std::vector<types::BoxfWithLandmarks> buf;
buf.push_back(input[i]);
merged[i] = 1;
for (unsigned int j = i + 1; j < box_num; ++j)
{
if (merged[j]) continue;
float iou = static_cast<float>(input[i].box.iou_of(input[j].box));
if (iou > iou_threshold)
{
merged[j] = 1;
buf.push_back(input[j]);
}
}
output.push_back(buf[0]);
// keep top k
count += 1;
if (count >= topk)
break;
}
}