-
Notifications
You must be signed in to change notification settings - Fork 3
/
theory_hol.lp
49 lines (46 loc) · 2.47 KB
/
theory_hol.lp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/* Encoding of simple type theory */
constant symbol Set : TYPE;
constant symbol bool : Set;
constant symbol fun : Set → Set → Set;
injective symbol El : Set → TYPE;
rule El (fun $a $b) ↪ El $a → El $b;
injective symbol Prf : El bool → TYPE;
/* HOL-Light primitive constants, axioms and rules */
constant symbol = [A] : El (fun A (fun A bool));
symbol el [A] : El A;
symbol ε [A] : El (fun (fun A bool) A);
symbol fun_ext [a b] [f g : El (fun a b)] :
(Π x, Prf (= (f x) (g x))) → Prf (= f g);
symbol prop_ext [p q : El bool] : (Prf p → Prf q) → (Prf q → Prf p) → Prf (= p q);
symbol REFL [a] (t : El a) : Prf (= t t);
symbol MK_COMB [a b] [s t : El (fun a b)] [u v : El a] :
Prf (= s t) → Prf (= u v) → Prf (= (s u) (t v));
symbol EQ_MP [p q : El bool] : Prf (= p q) → Prf p → Prf q;
opaque symbol TRANS [a] [x y z : El a] (xy: Prf (= x y)) (yz: Prf (= y z))
: Prf (= x z) ≔
@EQ_MP (@= a x y) (@= a x z) (@MK_COMB a bool (@= a x) (@= a x) y z (@REFL (fun a bool) (@= a x)) yz) xy;
opaque symbol SYM [a] [x y : El a] (xy: Prf (= x y)) : Prf (= y x) ≔
@EQ_MP (@= a x x) (@= a y x) (@MK_COMB a bool (@= a x) (@= a y) x x (@MK_COMB a (fun a bool) (@= a) (@= a) x y (@REFL (fun a (fun a bool)) (@= a)) xy) (@REFL a x)) (@REFL a x);
/* HOL-Light derived connectives */
constant symbol ∃₁ [A] : El (fun (fun A bool) bool);
constant symbol ¬ : El (fun bool bool);
constant symbol F : El bool;
constant symbol ∨ : El (fun bool (fun bool bool));
constant symbol ∃ [A] : El (fun (fun A bool) bool);
constant symbol ∀ [A] : El (fun (fun A bool) bool);
constant symbol ⇒ : El (fun bool (fun bool bool));
constant symbol ∧ : El (fun bool (fun bool bool));
constant symbol T : El bool;
/* Natural deduction rules */
rule Prf (⇒ $p $q) ↪ Prf $p → Prf $q;
rule Prf (∀ $p) ↪ Π x, Prf ($p x);
symbol Tᵢ : Prf T;
symbol ∧ᵢ [p : El bool] : Prf p → Π [q : El bool], Prf q → Prf (∧ p q);
symbol ∧ₑ₁ [p q : El bool] : Prf (∧ p q) → Prf p;
symbol ∧ₑ₂ [p q : El bool] : Prf (∧ p q) → Prf q;
symbol ∃ᵢ [a] (p : El a → El bool) t : Prf (p t) → Prf (∃ p);
symbol ∃ₑ [a] [p : El a → El bool] : Prf (∃ (λ x, p x)) → Π [r : El bool], (Π x:El a, Prf (p x) → Prf r) → Prf r;
symbol ∨ᵢ₁ [p : El bool] : Prf p → Π q : El bool, Prf (∨ p q);
symbol ∨ᵢ₂ (p : El bool) [q : El bool] : Prf q → Prf (∨ p q);
symbol ∨ₑ [p q : El bool] :
Prf (∨ p q) → Π [r], (Prf p → Prf r) → (Prf q → Prf r) → Prf r;