forked from jrh13/hol-light
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ind_types.ml
executable file
·1572 lines (1435 loc) · 71.1 KB
/
ind_types.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* ========================================================================= *)
(* Inductive (or free recursive) types. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "grobner.ml";;
(* ------------------------------------------------------------------------- *)
(* Abstract left inverses for binary injections (we could construct them...) *)
(* ------------------------------------------------------------------------- *)
let INJ_INVERSE2 = prove
(`!P:A->B->C.
(!x1 y1 x2 y2. (P x1 y1 = P x2 y2) <=> (x1 = x2) /\ (y1 = y2))
==> ?X Y. !x y. (X(P x y) = x) /\ (Y(P x y) = y)`,
GEN_TAC THEN DISCH_TAC THEN
EXISTS_TAC `\z:C. @x:A. ?y:B. P x y = z` THEN
EXISTS_TAC `\z:C. @y:B. ?x:A. P x y = z` THEN
REPEAT GEN_TAC THEN ASM_REWRITE_TAC[BETA_THM] THEN
CONJ_TAC THEN MATCH_MP_TAC SELECT_UNIQUE THEN GEN_TAC THEN BETA_TAC THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
W(EXISTS_TAC o rand o snd o dest_exists o snd) THEN REFL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Define an injective pairing function on ":num". *)
(* ------------------------------------------------------------------------- *)
let NUMPAIR = new_definition
`NUMPAIR x y = (2 EXP x) * (2 * y + 1)`;;
let NUMPAIR_INJ_LEMMA = prove
(`!x1 y1 x2 y2. (NUMPAIR x1 y1 = NUMPAIR x2 y2) ==> (x1 = x2)`,
REWRITE_TAC[NUMPAIR] THEN REPEAT(INDUCT_TAC THEN GEN_TAC) THEN
ASM_REWRITE_TAC[EXP; GSYM MULT_ASSOC; ARITH; EQ_MULT_LCANCEL;
NOT_SUC; GSYM NOT_SUC; SUC_INJ] THEN
DISCH_THEN(MP_TAC o AP_TERM `EVEN`) THEN
REWRITE_TAC[EVEN_MULT; EVEN_ADD; ARITH]);;
let NUMPAIR_INJ = prove
(`!x1 y1 x2 y2. (NUMPAIR x1 y1 = NUMPAIR x2 y2) <=> (x1 = x2) /\ (y1 = y2)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(SUBST_ALL_TAC o MATCH_MP NUMPAIR_INJ_LEMMA) THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[NUMPAIR] THEN
REWRITE_TAC[EQ_MULT_LCANCEL; EQ_ADD_RCANCEL; EXP_EQ_0; ARITH]);;
let NUMPAIR_DEST = new_specification
["NUMFST"; "NUMSND"]
(MATCH_MP INJ_INVERSE2 NUMPAIR_INJ);;
(* ------------------------------------------------------------------------- *)
(* Also, an injective map bool->num->num (even easier!) *)
(* ------------------------------------------------------------------------- *)
let NUMSUM = new_definition
`NUMSUM b x = if b then SUC(2 * x) else 2 * x`;;
let NUMSUM_INJ = prove
(`!b1 x1 b2 x2. (NUMSUM b1 x1 = NUMSUM b2 x2) <=> (b1 = b2) /\ (x1 = x2)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM(MP_TAC o REWRITE_RULE[NUMSUM]) THEN
DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC(AP_TERM `EVEN` th)) THEN
REPEAT COND_CASES_TAC THEN REWRITE_TAC[EVEN; EVEN_DOUBLE] THEN
REWRITE_TAC[SUC_INJ; EQ_MULT_LCANCEL; ARITH]);;
let NUMSUM_DEST = new_specification
["NUMLEFT"; "NUMRIGHT"]
(MATCH_MP INJ_INVERSE2 NUMSUM_INJ);;
(* ------------------------------------------------------------------------- *)
(* Injection num->Z, where Z == num->A->bool. *)
(* ------------------------------------------------------------------------- *)
let INJN = new_definition
`INJN (m:num) = \(n:num) (a:A). n = m`;;
let INJN_INJ = prove
(`!n1 n2. (INJN n1 :num->A->bool = INJN n2) <=> (n1 = n2)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM(MP_TAC o C AP_THM `n1:num` o REWRITE_RULE[INJN]) THEN
DISCH_THEN(MP_TAC o C AP_THM `a:A`) THEN REWRITE_TAC[BETA_THM]);;
(* ------------------------------------------------------------------------- *)
(* Injection A->Z, where Z == num->A->bool. *)
(* ------------------------------------------------------------------------- *)
let INJA = new_definition
`INJA (a:A) = \(n:num) b. b = a`;;
let INJA_INJ = prove
(`!a1 a2. (INJA a1 = INJA a2) <=> (a1:A = a2)`,
REPEAT GEN_TAC THEN REWRITE_TAC[INJA; FUN_EQ_THM] THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o SPEC `a1:A`) THEN REWRITE_TAC[];
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Injection (num->Z)->Z, where Z == num->A->bool. *)
(* ------------------------------------------------------------------------- *)
let INJF = new_definition
`INJF (f:num->(num->A->bool)) = \n. f (NUMFST n) (NUMSND n)`;;
let INJF_INJ = prove
(`!f1 f2. (INJF f1 :num->A->bool = INJF f2) <=> (f1 = f2)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[FUN_EQ_THM] THEN
MAP_EVERY X_GEN_TAC [`n:num`; `m:num`; `a:A`] THEN
POP_ASSUM(MP_TAC o REWRITE_RULE[INJF]) THEN
DISCH_THEN(MP_TAC o C AP_THM `a:A` o C AP_THM `NUMPAIR n m`) THEN
REWRITE_TAC[NUMPAIR_DEST]);;
(* ------------------------------------------------------------------------- *)
(* Injection Z->Z->Z, where Z == num->A->bool. *)
(* ------------------------------------------------------------------------- *)
let INJP = new_definition
`INJP f1 f2:num->A->bool =
\n a. if NUMLEFT n then f1 (NUMRIGHT n) a else f2 (NUMRIGHT n) a`;;
let INJP_INJ = prove
(`!(f1:num->A->bool) f1' f2 f2'.
(INJP f1 f2 = INJP f1' f2') <=> (f1 = f1') /\ (f2 = f2')`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[FUN_EQ_THM] THEN REWRITE_TAC[AND_FORALL_THM] THEN
X_GEN_TAC `n:num` THEN POP_ASSUM(MP_TAC o REWRITE_RULE[INJP]) THEN
DISCH_THEN(MP_TAC o GEN `b:bool` o C AP_THM `NUMSUM b n`) THEN
DISCH_THEN(fun th -> MP_TAC(SPEC `T` th) THEN MP_TAC(SPEC `F` th)) THEN
ASM_SIMP_TAC[NUMSUM_DEST; ETA_AX]);;
(* ------------------------------------------------------------------------- *)
(* Now, set up "constructor" and "bottom" element. *)
(* ------------------------------------------------------------------------- *)
let ZCONSTR = new_definition
`ZCONSTR c i r :num->A->bool
= INJP (INJN (SUC c)) (INJP (INJA i) (INJF r))`;;
let ZBOT = new_definition
`ZBOT = INJP (INJN 0) (@z:num->A->bool. T)`;;
let ZCONSTR_ZBOT = prove
(`!c i r. ~(ZCONSTR c i r :num->A->bool = ZBOT)`,
REWRITE_TAC[ZCONSTR; ZBOT; INJP_INJ; INJN_INJ; NOT_SUC]);;
(* ------------------------------------------------------------------------- *)
(* Carve out an inductively defined set. *)
(* ------------------------------------------------------------------------- *)
let ZRECSPACE_RULES,ZRECSPACE_INDUCT,ZRECSPACE_CASES =
new_inductive_definition
`ZRECSPACE (ZBOT:num->A->bool) /\
(!c i r. (!n. ZRECSPACE (r n)) ==> ZRECSPACE (ZCONSTR c i r))`;;
let recspace_tydef =
new_basic_type_definition "recspace" ("_mk_rec","_dest_rec")
(CONJUNCT1 ZRECSPACE_RULES);;
(* ------------------------------------------------------------------------- *)
(* Define lifted constructors. *)
(* ------------------------------------------------------------------------- *)
let BOTTOM = new_definition
`BOTTOM = _mk_rec (ZBOT:num->A->bool)`;;
let CONSTR = new_definition
`CONSTR c i r :(A)recspace
= _mk_rec (ZCONSTR c i (\n. _dest_rec(r n)))`;;
(* ------------------------------------------------------------------------- *)
(* Some lemmas. *)
(* ------------------------------------------------------------------------- *)
let MK_REC_INJ = prove
(`!x y. (_mk_rec x :(A)recspace = _mk_rec y)
==> (ZRECSPACE x /\ ZRECSPACE y ==> (x = y))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[snd recspace_tydef] THEN
DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM th]) THEN
ASM_REWRITE_TAC[]);;
let DEST_REC_INJ = prove
(`!x y. (_dest_rec x = _dest_rec y) <=> (x:(A)recspace = y)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM(MP_TAC o AP_TERM
`_mk_rec:(num->A->bool)->(A)recspace`) THEN
REWRITE_TAC[fst recspace_tydef]);;
(* ------------------------------------------------------------------------- *)
(* Show that the set is freely inductively generated. *)
(* ------------------------------------------------------------------------- *)
let CONSTR_BOT = prove
(`!c i r. ~(CONSTR c i r :(A)recspace = BOTTOM)`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONSTR; BOTTOM] THEN
DISCH_THEN(MP_TAC o MATCH_MP MK_REC_INJ) THEN
REWRITE_TAC[ZCONSTR_ZBOT; ZRECSPACE_RULES] THEN
MATCH_MP_TAC(CONJUNCT2 ZRECSPACE_RULES) THEN
REWRITE_TAC[fst recspace_tydef; snd recspace_tydef]);;
let CONSTR_INJ = prove
(`!c1 i1 r1 c2 i2 r2. (CONSTR c1 i1 r1 :(A)recspace = CONSTR c2 i2 r2) <=>
(c1 = c2) /\ (i1 = i2) /\ (r1 = r2)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM(MP_TAC o REWRITE_RULE[CONSTR]) THEN
DISCH_THEN(MP_TAC o MATCH_MP MK_REC_INJ) THEN
W(C SUBGOAL_THEN ASSUME_TAC o funpow 2 lhand o snd) THENL
[CONJ_TAC THEN MATCH_MP_TAC(CONJUNCT2 ZRECSPACE_RULES) THEN
REWRITE_TAC[fst recspace_tydef; snd recspace_tydef];
ASM_REWRITE_TAC[] THEN REWRITE_TAC[ZCONSTR] THEN
REWRITE_TAC[INJP_INJ; INJN_INJ; INJF_INJ; INJA_INJ] THEN
ONCE_REWRITE_TAC[FUN_EQ_THM] THEN BETA_TAC THEN
REWRITE_TAC[SUC_INJ; DEST_REC_INJ]]);;
let CONSTR_IND = prove
(`!P. P(BOTTOM) /\
(!c i r. (!n. P(r n)) ==> P(CONSTR c i r))
==> !x:(A)recspace. P(x)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `\z:num->A->bool. ZRECSPACE(z) /\ P(_mk_rec z)`
ZRECSPACE_INDUCT) THEN
BETA_TAC THEN ASM_REWRITE_TAC[ZRECSPACE_RULES; GSYM BOTTOM] THEN
W(C SUBGOAL_THEN ASSUME_TAC o funpow 2 lhand o snd) THENL
[REPEAT GEN_TAC THEN REWRITE_TAC[FORALL_AND_THM] THEN
REPEAT STRIP_TAC THENL
[MATCH_MP_TAC(CONJUNCT2 ZRECSPACE_RULES) THEN ASM_REWRITE_TAC[];
FIRST_ASSUM(ANTE_RES_THEN MP_TAC) THEN
REWRITE_TAC[CONSTR] THEN
RULE_ASSUM_TAC(REWRITE_RULE[snd recspace_tydef]) THEN
ASM_SIMP_TAC[ETA_AX]];
ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPEC `_dest_rec (x:(A)recspace)`) THEN
REWRITE_TAC[fst recspace_tydef] THEN
REWRITE_TAC[ITAUT `(a ==> a /\ b) <=> (a ==> b)`] THEN
DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[fst recspace_tydef; snd recspace_tydef]]);;
(* ------------------------------------------------------------------------- *)
(* Now prove the recursion theorem (this subcase is all we need). *)
(* ------------------------------------------------------------------------- *)
let CONSTR_REC = prove
(`!Fn:num->A->(num->(A)recspace)->(num->B)->B.
?f. (!c i r. f (CONSTR c i r) = Fn c i r (\n. f (r n)))`,
REPEAT STRIP_TAC THEN (MP_TAC o prove_inductive_relations_exist)
`(Z:(A)recspace->B->bool) BOTTOM b /\
(!c i r y. (!n. Z (r n) (y n)) ==> Z (CONSTR c i r) (Fn c i r y))` THEN
DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o GSYM)) THEN
SUBGOAL_THEN `!x. ?!y. (Z:(A)recspace->B->bool) x y` MP_TAC THENL
[W(MP_TAC o PART_MATCH rand CONSTR_IND o snd) THEN
DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THEN REPEAT GEN_TAC THENL
[FIRST_ASSUM(fun t -> GEN_REWRITE_TAC BINDER_CONV [GSYM t]) THEN
REWRITE_TAC[GSYM CONSTR_BOT; EXISTS_UNIQUE_REFL];
DISCH_THEN(MP_TAC o REWRITE_RULE[EXISTS_UNIQUE_THM; FORALL_AND_THM]) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[SKOLEM_THM]) THEN
DISCH_THEN(X_CHOOSE_THEN `y:num->B` ASSUME_TAC) THEN
REWRITE_TAC[EXISTS_UNIQUE_THM] THEN
FIRST_ASSUM(fun th -> CHANGED_TAC(ONCE_REWRITE_TAC[GSYM th])) THEN
CONJ_TAC THENL
[EXISTS_TAC `(Fn:num->A->(num->(A)recspace)->(num->B)->B) c i r y` THEN
REWRITE_TAC[CONSTR_BOT; CONSTR_INJ; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[UNWIND_THM1; RIGHT_EXISTS_AND_THM] THEN
EXISTS_TAC `y:num->B` THEN ASM_REWRITE_TAC[];
REWRITE_TAC[CONSTR_BOT; CONSTR_INJ; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[UNWIND_THM1; RIGHT_EXISTS_AND_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REPEAT AP_TERM_TAC THEN ONCE_REWRITE_TAC[FUN_EQ_THM] THEN
X_GEN_TAC `w:num` THEN FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `w:num` THEN ASM_REWRITE_TAC[]]];
REWRITE_TAC[UNIQUE_SKOLEM_ALT] THEN
DISCH_THEN(X_CHOOSE_THEN `fn:(A)recspace->B` (ASSUME_TAC o GSYM)) THEN
EXISTS_TAC `fn:(A)recspace->B` THEN ASM_REWRITE_TAC[] THEN
REPEAT GEN_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN GEN_TAC THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN
REWRITE_TAC[BETA_THM]]);;
(* ------------------------------------------------------------------------- *)
(* The following is useful for coding up functions casewise. *)
(* ------------------------------------------------------------------------- *)
let FCONS = new_recursive_definition num_RECURSION
`(!a f. FCONS (a:A) f 0 = a) /\
(!a f n. FCONS (a:A) f (SUC n) = f n)`;;
let FCONS_UNDO = prove
(`!f:num->A. f = FCONS (f 0) (f o SUC)`,
GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN
INDUCT_TAC THEN REWRITE_TAC[FCONS; o_THM]);;
let FNIL = new_definition
`FNIL (n:num) = @x:A. T`;;
(* ------------------------------------------------------------------------- *)
(* The initial mutual type definition function, with a type-restricted *)
(* recursion theorem. *)
(* ------------------------------------------------------------------------- *)
let define_type_raw =
(* ----------------------------------------------------------------------- *)
(* Handy utility to produce "SUC o SUC o SUC ..." form of numeral. *)
(* ----------------------------------------------------------------------- *)
let sucivate =
let zero = `0` and suc = `SUC` in
fun n -> funpow n (curry mk_comb suc) zero in
(* ----------------------------------------------------------------------- *)
(* Eliminate local "definitions" in hyps. *)
(* ----------------------------------------------------------------------- *)
let SCRUB_EQUATION eq (th,insts) = (*HA*)
let eq' = itlist subst (map (fun t -> [t]) insts) eq in
let l,r = dest_eq eq' in
(MP (INST [r,l] (DISCH eq' th)) (REFL r),(r,l)::insts) in
(* ----------------------------------------------------------------------- *)
(* Proves existence of model (inductively); use pseudo-constructors. *)
(* *)
(* Returns suitable definitions of constructors in terms of CONSTR, and *)
(* the rule and induction theorems from the inductive relation package. *)
(* ----------------------------------------------------------------------- *)
let justify_inductive_type_model =
let t_tm = `T` and n_tm = `n:num` and beps_tm = `@x:bool. T` in
let rec munion s1 s2 =
if s1 = [] then s2 else
let h1 = hd s1
and s1' = tl s1 in
try let _,s2' = remove (fun h2 -> h2 = h1) s2 in h1::(munion s1' s2')
with Failure _ -> h1::(munion s1' s2) in
fun def ->
let newtys,rights = unzip def in
let tyargls = itlist ((@) o map snd) rights [] in
let alltys = itlist (munion o C subtract newtys) tyargls [] in
let epstms = map (fun ty -> mk_select(mk_var("v",ty),t_tm)) alltys in
let pty =
try end_itlist (fun ty1 ty2 -> mk_type("prod",[ty1;ty2])) alltys
with Failure _ -> bool_ty in
let recty = mk_type("recspace",[pty]) in
let constr = mk_const("CONSTR",[pty,aty]) in
let fcons = mk_const("FCONS",[recty,aty]) in
let bot = mk_const("BOTTOM",[pty,aty]) in
let bottail = mk_abs(n_tm,bot) in
let mk_constructor n (cname,cargs) =
let ttys = map (fun ty -> if mem ty newtys then recty else ty) cargs in
let args = make_args "a" [] ttys in
let rargs,iargs = partition (fun t -> type_of t = recty) args in
let rec mk_injector epstms alltys iargs =
if alltys = [] then [] else
let ty = hd alltys in
try let a,iargs' = remove (fun t -> type_of t = ty) iargs in
a::(mk_injector (tl epstms) (tl alltys) iargs')
with Failure _ ->
(hd epstms)::(mk_injector (tl epstms) (tl alltys) iargs) in
let iarg =
try end_itlist (curry mk_pair) (mk_injector epstms alltys iargs)
with Failure _ -> beps_tm in
let rarg = itlist (mk_binop fcons) rargs bottail in
let conty = itlist mk_fun_ty (map type_of args) recty in
let condef = list_mk_comb(constr,[sucivate n; iarg; rarg]) in
mk_eq(mk_var(cname,conty),list_mk_abs(args,condef)) in
let rec mk_constructors n rights =
if rights = [] then [] else
(mk_constructor n (hd rights))::(mk_constructors (n + 1) (tl rights)) in
let condefs = mk_constructors 0 (itlist (@) rights []) in
let conths = map ASSUME condefs in
let predty = mk_fun_ty recty bool_ty in
let edefs = itlist (fun (x,l) acc -> map (fun t -> x,t) l @ acc) def [] in
let idefs = map2 (fun (r,(_,atys)) def -> (r,atys),def) edefs condefs in
let mk_rule ((r,a),condef) =
let left,right = dest_eq condef in
let args,bod = strip_abs right in
let lapp = list_mk_comb(left,args) in
let conds = itlist2
(fun arg argty sofar ->
if mem argty newtys then
mk_comb(mk_var(dest_vartype argty,predty),arg)::sofar
else sofar) args a [] in
let conc = mk_comb(mk_var(dest_vartype r,predty),lapp) in
let rule = if conds = [] then conc
else mk_imp(list_mk_conj conds,conc) in
list_mk_forall(args,rule) in
let rules = list_mk_conj (map mk_rule idefs) in
let th0 = derive_nonschematic_inductive_relations rules in
let th1 = prove_monotonicity_hyps th0 in
let th2a,th2bc = CONJ_PAIR th1 in
let th2b = CONJUNCT1 th2bc in
conths,th2a,th2b in
(* ----------------------------------------------------------------------- *)
(* Shows that the predicates defined by the rules are all nonempty. *)
(* (This could be done much more efficiently/cleverly, but it's OK.) *)
(* ----------------------------------------------------------------------- *)
let prove_model_inhabitation rth =
let srules = map SPEC_ALL (CONJUNCTS rth) in
let imps,bases = partition (is_imp o concl) srules in
let concs = map concl bases @ map (rand o concl) imps in
let preds = setify (map (repeat rator) concs) in
let rec exhaust_inhabitations ths sofar =
let dunnit = setify(map (fst o strip_comb o concl) sofar) in
let useful = filter
(fun th -> not (mem (fst(strip_comb(rand(concl th)))) dunnit)) ths in
if useful = [] then sofar else
let follow_horn thm =
let preds = map (fst o strip_comb) (conjuncts(lhand(concl thm))) in
let asms = map
(fun p -> find (fun th -> fst(strip_comb(concl th)) = p) sofar)
preds in
MATCH_MP thm (end_itlist CONJ asms) in
let newth = tryfind follow_horn useful in
exhaust_inhabitations ths (newth::sofar) in
let ithms = exhaust_inhabitations imps bases in
let exths = map
(fun p -> find (fun th -> fst(strip_comb(concl th)) = p) ithms) preds in
exths in
(* ----------------------------------------------------------------------- *)
(* Makes a type definition for one of the defined subsets. *)
(* ----------------------------------------------------------------------- *)
let define_inductive_type cdefs exth =
let extm = concl exth in
let epred = fst(strip_comb extm) in
let ename = fst(dest_var epred) in
let th1 = ASSUME (find (fun eq -> lhand eq = epred) (hyp exth)) in
let th2 = TRANS th1 (SUBS_CONV cdefs (rand(concl th1))) in
let th3 = EQ_MP (AP_THM th2 (rand extm)) exth in
let th4,_ = itlist SCRUB_EQUATION (hyp th3) (th3,[]) in
let mkname = "_mk_"^ename and destname = "_dest_"^ename in
let bij1,bij2 = new_basic_type_definition ename (mkname,destname) th4 in
let bij2a = AP_THM th2 (rand(rand(concl bij2))) in
let bij2b = TRANS bij2a bij2 in
bij1,bij2b in
(* ----------------------------------------------------------------------- *)
(* Defines a type constructor corresponding to current pseudo-constructor. *)
(* ----------------------------------------------------------------------- *)
let define_inductive_type_constructor defs consindex th =
let avs,bod = strip_forall(concl th) in
let asms,conc =
if is_imp bod then conjuncts(lhand bod),rand bod else [],bod in
let asmlist = map dest_comb asms in
let cpred,cterm = dest_comb conc in
let oldcon,oldargs = strip_comb cterm in
let modify_arg v =
try let dest = snd(assoc (rev_assoc v asmlist) consindex) in
let ty' = hd(snd(dest_type(type_of dest))) in
let v' = mk_var(fst(dest_var v),ty') in
mk_comb(dest,v'),v'
with Failure _ -> v,v in
let newrights,newargs = unzip(map modify_arg oldargs) in
let retmk = fst(assoc cpred consindex) in
let defbod = mk_comb(retmk,list_mk_comb(oldcon,newrights)) in
let defrt = list_mk_abs(newargs,defbod) in
let expth = find (fun th -> lhand(concl th) = oldcon) defs in
let rexpth = SUBS_CONV [expth] defrt in
let deflf = mk_var(fst(dest_var oldcon),type_of defrt) in
let defth = new_definition(mk_eq(deflf,rand(concl rexpth))) in
TRANS defth (SYM rexpth) in
(* ----------------------------------------------------------------------- *)
(* Instantiate the induction theorem on the representatives to transfer *)
(* it to the new type(s). Uses "\x. rep-pred(x) /\ P(mk x)" for "P". *)
(* ----------------------------------------------------------------------- *)
let instantiate_induction_theorem consindex ith =
let avs,bod = strip_forall(concl ith) in
let corlist = map((repeat rator F_F repeat rator) o dest_imp o body o rand)
(conjuncts(rand bod)) in
let consindex' = map (fun v -> let w = rev_assoc v corlist in
w,assoc w consindex) avs in
let recty = (hd o snd o dest_type o type_of o fst o snd o hd) consindex in
let newtys = map (hd o snd o dest_type o type_of o snd o snd) consindex' in
let ptypes = map (C mk_fun_ty bool_ty) newtys in
let preds = make_args "P" [] ptypes in
let args = make_args "x" [] (map (K recty) preds) in
let lambs = map2 (fun (r,(m,d)) (p,a) ->
mk_abs(a,mk_conj(mk_comb(r,a),mk_comb(p,mk_comb(m,a)))))
consindex' (zip preds args) in
SPECL lambs ith in
(* ----------------------------------------------------------------------- *)
(* Reduce a single clause of the postulated induction theorem (old_ver) ba *)
(* to the kind wanted for the new type (new_ver); |- new_ver ==> old_ver *)
(* ----------------------------------------------------------------------- *)
let pullback_induction_clause tybijpairs conthms =
let PRERULE = GEN_REWRITE_RULE (funpow 3 RAND_CONV) (map SYM conthms) in
let IPRULE = SYM o GEN_REWRITE_RULE I (map snd tybijpairs) in
fun rthm tm ->
let avs,bimp = strip_forall tm in
if is_imp bimp then
let ant,con = dest_imp bimp in
let ths = map (CONV_RULE BETA_CONV) (CONJUNCTS (ASSUME ant)) in
let tths,pths = unzip (map CONJ_PAIR ths) in
let tth = MATCH_MP (SPEC_ALL rthm) (end_itlist CONJ tths) in
let mths = map IPRULE (tth::tths) in
let conth1 = BETA_CONV con in
let contm1 = rand(concl conth1) in
let conth2 = TRANS conth1
(AP_TERM (rator contm1) (SUBS_CONV (tl mths) (rand contm1))) in
let conth3 = PRERULE conth2 in
let lctms = map concl pths in
let asmin = mk_imp(list_mk_conj lctms,rand(rand(concl conth3))) in
let argsin = map rand (conjuncts(lhand asmin)) in
let argsgen =
map (fun tm -> mk_var(fst(dest_var(rand tm)),type_of tm)) argsin in
let asmgen = subst (zip argsgen argsin) asmin in
let asmquant =
list_mk_forall(snd(strip_comb(rand(rand asmgen))),asmgen) in
let th1 = INST (zip argsin argsgen) (SPEC_ALL (ASSUME asmquant)) in
let th2 = MP th1 (end_itlist CONJ pths) in
let th3 = EQ_MP (SYM conth3) (CONJ tth th2) in
DISCH asmquant (GENL avs (DISCH ant th3))
else
let con = bimp in
let conth2 = BETA_CONV con in
let tth = PART_MATCH I rthm (lhand(rand(concl conth2))) in
let conth3 = PRERULE conth2 in
let asmgen = rand(rand(concl conth3)) in
let asmquant = list_mk_forall(snd(strip_comb(rand asmgen)),asmgen) in
let th2 = SPEC_ALL (ASSUME asmquant) in
let th3 = EQ_MP (SYM conth3) (CONJ tth th2) in
DISCH asmquant (GENL avs th3) in
(* ----------------------------------------------------------------------- *)
(* Finish off a consequence of the induction theorem. *)
(* ----------------------------------------------------------------------- *)
let finish_induction_conclusion consindex tybijpairs =
let tybij1,tybij2 = unzip tybijpairs in
let PRERULE =
GEN_REWRITE_RULE (LAND_CONV o LAND_CONV o RAND_CONV) tybij1 o
GEN_REWRITE_RULE LAND_CONV tybij2
and FINRULE = GEN_REWRITE_RULE RAND_CONV tybij1 in
fun th ->
let av,bimp = dest_forall(concl th) in
let pv = lhand(body(rator(rand bimp))) in
let p,v = dest_comb pv in
let mk,dest = assoc p consindex in
let ty = hd(snd(dest_type(type_of dest))) in
let v' = mk_var(fst(dest_var v),ty) in
let dv = mk_comb(dest,v') in
let th1 = PRERULE (SPEC dv th) in
let th2 = MP th1 (REFL (rand(lhand(concl th1)))) in
let th3 = CONV_RULE BETA_CONV th2 in
GEN v' (FINRULE (CONJUNCT2 th3)) in
(* ----------------------------------------------------------------------- *)
(* Derive the induction theorem. *)
(* ----------------------------------------------------------------------- *)
let derive_induction_theorem consindex tybijpairs conthms iith rth =
let bths = map2
(pullback_induction_clause tybijpairs conthms)
(CONJUNCTS rth) (conjuncts(lhand(concl iith))) in
let asm = list_mk_conj(map (lhand o concl) bths) in
let ths = map2 MP bths (CONJUNCTS (ASSUME asm)) in
let th1 = MP iith (end_itlist CONJ ths) in
let th2 = end_itlist CONJ (map
(finish_induction_conclusion consindex tybijpairs) (CONJUNCTS th1)) in
let th3 = DISCH asm th2 in
let preds = map (rator o body o rand) (conjuncts(rand(concl th3))) in
let th4 = GENL preds th3 in
let pasms = filter (C mem (map fst consindex) o lhand) (hyp th4) in
let th5 = itlist DISCH pasms th4 in
let th6,_ = itlist SCRUB_EQUATION (hyp th5) (th5,[]) in
let th7 = UNDISCH_ALL th6 in
fst (itlist SCRUB_EQUATION (hyp th7) (th7,[])) in
(* ----------------------------------------------------------------------- *)
(* Create the recursive functions and eliminate pseudo-constructors. *)
(* (These are kept just long enough to derive the key property.) *)
(* ----------------------------------------------------------------------- *)
let create_recursive_functions tybijpairs consindex conthms rth =
let domtys = map (hd o snd o dest_type o type_of o snd o snd) consindex in
let recty = (hd o snd o dest_type o type_of o fst o snd o hd) consindex in
let ranty = mk_vartype "Z" in
let fn = mk_var("fn",mk_fun_ty recty ranty)
and fns = make_args "fn" [] (map (C mk_fun_ty ranty) domtys) in
let args = make_args "a" [] domtys in
let rights = map2 (fun (_,(_,d)) a -> mk_abs(a,mk_comb(fn,mk_comb(d,a))))
consindex args in
let eqs = map2 (curry mk_eq) fns rights in
let fdefs = map ASSUME eqs in
let fxths1 = map (fun th1 -> tryfind (fun th2 -> MK_COMB(th2,th1)) fdefs)
conthms in
let fxths2 = map (fun th -> TRANS th (BETA_CONV (rand(concl th)))) fxths1 in
let mk_tybijcons (th1,th2) =
let th3 = INST [rand(lhand(concl th1)),rand(lhand(concl th2))] th2 in
let th4 = AP_TERM (rator(lhand(rand(concl th2)))) th1 in
EQ_MP (SYM th3) th4 in
let SCONV = GEN_REWRITE_CONV I (map mk_tybijcons tybijpairs)
and ERULE = GEN_REWRITE_RULE I (map snd tybijpairs) in
let simplify_fxthm rthm fxth =
let pat = funpow 4 rand (concl fxth) in
if is_imp(repeat (snd o dest_forall) (concl rthm)) then
let th1 = PART_MATCH (rand o rand) rthm pat in
let tms1 = conjuncts(lhand(concl th1)) in
let ths2 = map (fun t -> EQ_MP (SYM(SCONV t)) TRUTH) tms1 in
ERULE (MP th1 (end_itlist CONJ ths2))
else
ERULE (PART_MATCH rand rthm pat) in
let fxths3 = map2 simplify_fxthm (CONJUNCTS rth) fxths2 in
let fxths4 = map2 (fun th1 -> TRANS th1 o AP_TERM fn) fxths2 fxths3 in
let cleanup_fxthm cth fxth =
let tms = snd(strip_comb(rand(rand(concl fxth)))) in
let kth = RIGHT_BETAS tms (ASSUME (hd(hyp cth))) in
TRANS fxth (AP_TERM fn kth) in
let fxth5 = end_itlist CONJ (map2 cleanup_fxthm conthms fxths4) in
let pasms = filter (C mem (map fst consindex) o lhand) (hyp fxth5) in
let fxth6 = itlist DISCH pasms fxth5 in
let fxth7,_ =
itlist SCRUB_EQUATION (itlist (union o hyp) conthms []) (fxth6,[]) in
let fxth8 = UNDISCH_ALL fxth7 in
fst (itlist SCRUB_EQUATION (subtract (hyp fxth8) eqs) (fxth8,[])) in
(* ----------------------------------------------------------------------- *)
(* Create a function for recursion clause. *)
(* ----------------------------------------------------------------------- *)
let create_recursion_iso_constructor =
let s = `s:num->Z` in
let zty = `:Z` in
let numty = `:num` in
let rec extract_arg tup v =
if v = tup then REFL tup else
let t1,t2 = dest_pair tup in
let PAIR_th = ISPECL [t1;t2] (if free_in v t1 then FST else SND) in
let tup' = rand(concl PAIR_th) in
if tup' = v then PAIR_th else
let th = extract_arg (rand(concl PAIR_th)) v in
SUBS[SYM PAIR_th] th in
fun consindex ->
let recty = hd(snd(dest_type(type_of(fst(hd consindex))))) in
let domty = hd(snd(dest_type recty)) in
let i = mk_var("i",domty)
and r = mk_var("r",mk_fun_ty numty recty) in
let mks = map (fst o snd) consindex in
let mkindex = map (fun t -> hd(tl(snd(dest_type(type_of t)))),t) mks in
fun cth ->
let artms = snd(strip_comb(rand(rand(concl cth)))) in
let artys = mapfilter (type_of o rand) artms in
let args,bod = strip_abs(rand(hd(hyp cth))) in
let ccitm,rtm = dest_comb bod in
let cctm,itm = dest_comb ccitm in
let rargs,iargs = partition (C free_in rtm) args in
let xths = map (extract_arg itm) iargs in
let cargs' = map (subst [i,itm] o lhand o concl) xths in
let indices = map sucivate (0--(length rargs - 1)) in
let rindexed = map (curry mk_comb r) indices in
let rargs' = map2 (fun a rx -> mk_comb(assoc a mkindex,rx))
artys rindexed in
let sargs' = map (curry mk_comb s) indices in
let allargs = cargs'@ rargs' @ sargs' in
let funty = itlist (mk_fun_ty o type_of) allargs zty in
let funname = fst(dest_const(repeat rator (lhand(concl cth))))^"'" in
let funarg = mk_var(funname,funty) in
list_mk_abs([i;r;s],list_mk_comb(funarg,allargs)) in
(* ----------------------------------------------------------------------- *)
(* Derive the recursion theorem. *)
(* ----------------------------------------------------------------------- *)
let derive_recursion_theorem =
let CCONV = funpow 3 RATOR_CONV (REPEATC (GEN_REWRITE_CONV I [FCONS])) in
fun tybijpairs consindex conthms rath ->
let isocons = map (create_recursion_iso_constructor consindex) conthms in
let ty = type_of(hd isocons) in
let fcons = mk_const("FCONS",[ty,aty])
and fnil = mk_const("FNIL",[ty,aty]) in
let bigfun = itlist (mk_binop fcons) isocons fnil in
let eth = ISPEC bigfun CONSTR_REC in
let fn = rator(rand(hd(conjuncts(concl rath)))) in
let betm = let v,bod = dest_abs(rand(concl eth)) in vsubst[fn,v] bod in
let LCONV = REWR_CONV (ASSUME betm) in
let fnths =
map (fun t -> RIGHT_BETAS [bndvar(rand t)] (ASSUME t)) (hyp rath) in
let SIMPER = PURE_REWRITE_RULE
(map SYM fnths @ map fst tybijpairs @ [FST; SND; FCONS; BETA_THM]) in
let hackdown_rath th =
let ltm,rtm = dest_eq(concl th) in
let wargs = snd(strip_comb(rand ltm)) in
let th1 = TRANS th (LCONV rtm) in
let th2 = TRANS th1 (CCONV (rand(concl th1))) in
let th3 = TRANS th2 (funpow 2 RATOR_CONV BETA_CONV (rand(concl th2))) in
let th4 = TRANS th3 (RATOR_CONV BETA_CONV (rand(concl th3))) in
let th5 = TRANS th4 (BETA_CONV (rand(concl th4))) in
GENL wargs (SIMPER th5) in
let rthm = end_itlist CONJ (map hackdown_rath (CONJUNCTS rath)) in
let seqs =
let unseqs = filter is_eq (hyp rthm) in
let tys = map (hd o snd o dest_type o type_of o snd o snd) consindex in
map (fun ty -> find
(fun t -> hd(snd(dest_type(type_of(lhand t)))) = ty) unseqs) tys in
let rethm = itlist EXISTS_EQUATION seqs rthm in
let fethm = CHOOSE(fn,eth) rethm in
let pcons = map (repeat rator o rand o repeat (snd o dest_forall))
(conjuncts(concl rthm)) in
GENL pcons fethm in
(* ----------------------------------------------------------------------- *)
(* Basic function: returns induction and recursion separately. No parser. *)
(* ----------------------------------------------------------------------- *)
fun def ->
let defs,rth,ith = justify_inductive_type_model def in
let neths = prove_model_inhabitation rth in
let tybijpairs = map (define_inductive_type defs) neths in
let preds = map (repeat rator o concl) neths in
let mkdests = map
(fun (th,_) -> let tm = lhand(concl th) in rator tm,rator(rand tm))
tybijpairs in
let consindex = zip preds mkdests in
let condefs = map (define_inductive_type_constructor defs consindex)
(CONJUNCTS rth) in
let conthms = map
(fun th -> let args = fst(strip_abs(rand(concl th))) in
RIGHT_BETAS args th) condefs in
let iith = instantiate_induction_theorem consindex ith in
let fth = derive_induction_theorem consindex tybijpairs conthms iith rth in
let rath = create_recursive_functions tybijpairs consindex conthms rth in
let kth = derive_recursion_theorem tybijpairs consindex conthms rath in
fth,kth;;
(* ------------------------------------------------------------------------- *)
(* Parser to present a nice interface a la Melham. *)
(* ------------------------------------------------------------------------- *)
let parse_inductive_type_specification =
let parse_type_loc src =
let pty,rst = parse_pretype src in
type_of_pretype pty,rst in
let parse_type_conapp src =
let cn,sps =
match src with (Ident cn)::sps -> cn,sps
| _ -> fail() in
let tys,rst = many parse_type_loc sps in
(cn,tys),rst in
let parse_type_clause src =
let tn,sps =
match src with (Ident tn)::sps -> tn,sps
| _ -> fail() in
let tys,rst = (a (Ident "=") ++ listof parse_type_conapp (a (Resword "|"))
"type definition clauses"
>> snd) sps in
(mk_vartype tn,tys),rst in
let parse_type_definition =
listof parse_type_clause (a (Resword ";")) "type definition" in
fun s ->
let spec,rst = (parse_type_definition o lex o explode) s in
if rst = [] then spec
else failwith "parse_inductive_type_specification: junk after def";;
(* ------------------------------------------------------------------------- *)
(* Use this temporary version to define the sum type. *)
(* ------------------------------------------------------------------------- *)
let sum_INDUCT,sum_RECURSION =
define_type_raw (parse_inductive_type_specification "sum = INL A | INR B");;
let OUTL = new_recursive_definition sum_RECURSION
`OUTL (INL x :A+B) = x`;;
let OUTR = new_recursive_definition sum_RECURSION
`OUTR (INR y :A+B) = y`;;
(* ------------------------------------------------------------------------- *)
(* Generalize the recursion theorem to multiple domain types. *)
(* (We needed to use a single type to justify it via a proforma theorem.) *)
(* *)
(* NB! Before this is called nontrivially (i.e. more than one new type) *)
(* the type constructor ":sum", used internally, must have been defined. *)
(* ------------------------------------------------------------------------- *)
let define_type_raw =
let generalize_recursion_theorem =
let ELIM_OUTCOMBS = GEN_REWRITE_RULE TOP_DEPTH_CONV [OUTL; OUTR] in
let rec mk_sum tys =
let k = length tys in
if k = 1 then hd tys else
let tys1,tys2 = chop_list (k / 2) tys in
mk_type("sum",[mk_sum tys1; mk_sum tys2]) in
let mk_inls =
let rec mk_inls ty =
if is_vartype ty then [mk_var("x",ty)] else
let _,[ty1;ty2] = dest_type ty in
let inls1 = mk_inls ty1
and inls2 = mk_inls ty2 in
let inl = mk_const("INL",[ty1,aty; ty2,bty])
and inr = mk_const("INR",[ty1,aty; ty2,bty]) in
map (curry mk_comb inl) inls1 @ map (curry mk_comb inr) inls2 in
fun ty -> let bods = mk_inls ty in
map (fun t -> mk_abs(find_term is_var t,t)) bods in
let mk_outls =
let rec mk_inls sof ty =
if is_vartype ty then [sof] else
let _,[ty1;ty2] = dest_type ty in
let outl = mk_const("OUTL",[ty1,aty; ty2,bty])
and outr = mk_const("OUTR",[ty1,aty; ty2,bty]) in
mk_inls (mk_comb(outl,sof)) ty1 @ mk_inls (mk_comb(outr,sof)) ty2 in
fun ty -> let x = mk_var("x",ty) in
map (curry mk_abs x) (mk_inls x ty) in
let mk_newfun fn outl =
let s,ty = dest_var fn in
let dty = hd(snd(dest_type ty)) in
let x = mk_var("x",dty) in
let y,bod = dest_abs outl in
let r = mk_abs(x,vsubst[mk_comb(fn,x),y] bod) in
let l = mk_var(s,type_of r) in
let th1 = ASSUME (mk_eq(l,r)) in
RIGHT_BETAS [x] th1 in
fun th ->
let avs,ebod = strip_forall(concl th) in
let evs,bod = strip_exists ebod in
let n = length evs in
if n = 1 then th else
let tys = map (fun i -> mk_vartype ("Z"^(string_of_int i)))
(0--(n - 1)) in
let sty = mk_sum tys in
let inls = mk_inls sty
and outls = mk_outls sty in
let zty = type_of(rand(snd(strip_forall(hd(conjuncts bod))))) in
let ith = INST_TYPE [sty,zty] th in
let avs,ebod = strip_forall(concl ith) in
let evs,bod = strip_exists ebod in
let fns' = map2 mk_newfun evs outls in
let fnalist = zip evs (map (rator o lhs o concl) fns')
and inlalist = zip evs inls
and outlalist = zip evs outls in
let hack_clause tm =
let avs,bod = strip_forall tm in
let l,r = dest_eq bod in
let fn,args = strip_comb r in
let pargs = map
(fun a -> let g = genvar(type_of a) in
if is_var a then g,g else
let outl = assoc (rator a) outlalist in
mk_comb(outl,g),g) args in
let args',args'' = unzip pargs in
let inl = assoc (rator l) inlalist in
let rty = hd(snd(dest_type(type_of inl))) in
let nty = itlist (mk_fun_ty o type_of) args' rty in
let fn' = mk_var(fst(dest_var fn),nty) in
let r' = list_mk_abs(args'',mk_comb(inl,list_mk_comb(fn',args'))) in
r',fn in
let defs = map hack_clause (conjuncts bod) in
let jth = BETA_RULE (SPECL (map fst defs) ith) in
let bth = ASSUME (snd(strip_exists(concl jth))) in
let finish_clause th =
let avs,bod = strip_forall (concl th) in
let outl = assoc (rator (lhand bod)) outlalist in
GENL avs (BETA_RULE (AP_TERM outl (SPECL avs th))) in
let cth = end_itlist CONJ (map finish_clause (CONJUNCTS bth)) in
let dth = ELIM_OUTCOMBS cth in
let eth = GEN_REWRITE_RULE ONCE_DEPTH_CONV (map SYM fns') dth in
let fth = itlist SIMPLE_EXISTS (map snd fnalist) eth in
let dtms = map (hd o hyp) fns' in
let gth = itlist (fun e th -> let l,r = dest_eq e in
MP (INST [r,l] (DISCH e th)) (REFL r)) dtms fth in
let hth = PROVE_HYP jth (itlist SIMPLE_CHOOSE evs gth) in
let xvs = map (fst o strip_comb o rand o snd o strip_forall)
(conjuncts(concl eth)) in
GENL xvs hth in
fun def -> let ith,rth = define_type_raw def in
ith,generalize_recursion_theorem rth;;
(* ------------------------------------------------------------------------- *)
(* Set up options and lists. *)
(* ------------------------------------------------------------------------- *)
let option_INDUCT,option_RECURSION =
define_type_raw
(parse_inductive_type_specification "option = NONE | SOME A");;
let list_INDUCT,list_RECURSION =
define_type_raw
(parse_inductive_type_specification "list = NIL | CONS A list");;
let FORALL_OPTION_THM = prove
(`!P:A option->bool. (!x. P x) <=> P NONE /\ !a. P(SOME a)`,
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[option_INDUCT] THEN SIMP_TAC[]);;
let EXISTS_OPTION_THM = prove
(`!P:A option->bool. (?x. P x) <=> P NONE \/ ?a. P(SOME a)`,
GEN_TAC THEN REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN
REWRITE_TAC[FORALL_OPTION_THM] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Tools for proving injectivity and distinctness of constructors. *)
(* ------------------------------------------------------------------------- *)
let prove_constructors_injective =
let DEPAIR = GEN_REWRITE_RULE TOP_SWEEP_CONV [PAIR_EQ] in
let prove_distinctness ax pat =
let f,args = strip_comb pat in
let rt = end_itlist (curry mk_pair) args in
let ty = mk_fun_ty (type_of pat) (type_of rt) in
let fn = genvar ty in
let dtm = mk_eq(mk_comb(fn,pat),rt) in
let eth = prove_recursive_functions_exist ax (list_mk_forall(args,dtm)) in
let args' = variants args args in
let atm = mk_eq(pat,list_mk_comb(f,args')) in
let ath = ASSUME atm in
let bth = AP_TERM fn ath in
let cth1 = SPECL args (ASSUME(snd(dest_exists(concl eth)))) in
let cth2 = INST (zip args' args) cth1 in
let pth = TRANS (TRANS (SYM cth1) bth) cth2 in
let qth = DEPAIR pth in
let qtm = concl qth in
let rth = rev_itlist (C(curry MK_COMB)) (CONJUNCTS(ASSUME qtm)) (REFL f) in
let tth = IMP_ANTISYM_RULE (DISCH atm qth) (DISCH qtm rth) in
let uth = GENL args (GENL args' tth) in
PROVE_HYP eth (SIMPLE_CHOOSE fn uth) in
fun ax ->
let cls = conjuncts(snd(strip_exists(snd(strip_forall(concl ax))))) in
let pats = map (rand o lhand o snd o strip_forall) cls in
end_itlist CONJ (mapfilter (prove_distinctness ax) pats);;
let prove_constructors_distinct =
let num_ty = `:num` in
let rec allopairs f l m =
if l = [] then [] else
map (f (hd l)) (tl m) @ allopairs f (tl l) (tl m) in
let NEGATE = GEN_ALL o CONV_RULE (REWR_CONV (TAUT `a ==> F <=> ~a`)) in
let prove_distinct ax pat =
let nums = map mk_small_numeral (0--(length pat - 1)) in
let fn = genvar (mk_type("fun",[type_of(hd pat); num_ty])) in
let ls = map (curry mk_comb fn) pat in
let defs = map2 (fun l r -> list_mk_forall(frees (rand l),mk_eq(l,r)))
ls nums in
let eth = prove_recursive_functions_exist ax (list_mk_conj defs) in
let ev,bod = dest_exists(concl eth) in
let REWRITE = GEN_REWRITE_RULE ONCE_DEPTH_CONV (CONJUNCTS (ASSUME bod)) in
let pat' = map
(fun t -> let f,args = if is_numeral t then t,[] else strip_comb t in
list_mk_comb(f,variants args args)) pat in
let pairs = allopairs (curry mk_eq) pat pat' in
let nths = map (REWRITE o AP_TERM fn o ASSUME) pairs in
let fths = map2 (fun t th -> NEGATE (DISCH t (CONV_RULE NUM_EQ_CONV th)))
pairs nths in
CONJUNCTS(PROVE_HYP eth (SIMPLE_CHOOSE ev (end_itlist CONJ fths))) in
fun ax ->
let cls = conjuncts(snd(strip_exists(snd(strip_forall(concl ax))))) in
let lefts = map (dest_comb o lhand o snd o strip_forall) cls in
let fns = itlist (insert o fst) lefts [] in
let pats = map (fun f -> map snd (filter ((=)f o fst) lefts)) fns in
end_itlist CONJ
(end_itlist (@) (mapfilter (prove_distinct ax) pats));;
(* ------------------------------------------------------------------------- *)
(* Automatically prove the case analysis theorems. *)
(* ------------------------------------------------------------------------- *)
let prove_cases_thm =
let mk_exclauses x rpats =
let xts = map (fun t -> list_mk_exists(frees t,mk_eq(x,t))) rpats in
mk_abs(x,list_mk_disj xts) in
let prove_triv tm =
let evs,bod = strip_exists tm in
let l,r = dest_eq bod in
if l = r then REFL l else
let lf,largs = strip_comb l
and rf,rargs = strip_comb r in
if lf = rf then
let ths = map (ASSUME o mk_eq) (zip rargs largs) in
let th1 = rev_itlist (C (curry MK_COMB)) ths (REFL lf) in
itlist EXISTS_EQUATION (map concl ths) (SYM th1)
else failwith "prove_triv" in
let rec prove_disj tm =
if is_disj tm then
let l,r = dest_disj tm in
try DISJ1 (prove_triv l) r
with Failure _ -> DISJ2 l (prove_disj r)
else
prove_triv tm in
let prove_eclause tm =
let avs,bod = strip_forall tm in
let ctm = if is_imp bod then rand bod else bod in
let cth = prove_disj ctm in
let dth = if is_imp bod then DISCH (lhand bod) cth else cth in
GENL avs dth in
fun th ->
let avs,bod = strip_forall(concl th) in
let cls = map (snd o strip_forall) (conjuncts(lhand bod)) in
let pats = map (fun t -> if is_imp t then rand t else t) cls in
let spats = map dest_comb pats in
let preds = itlist (insert o fst) spats [] in
let rpatlist = map
(fun pr -> map snd (filter (fun (p,x) -> p = pr) spats)) preds in
let xs = make_args "x" (freesl pats) (map (type_of o hd) rpatlist) in