forked from jrh13/hol-light
-
Notifications
You must be signed in to change notification settings - Fork 0
/
drule.ml
576 lines (533 loc) · 23.7 KB
/
drule.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
(* ========================================================================= *)
(* More sophisticated derived rules including definitions and rewriting. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* (c) Copyright, Michael Faerber 2018 *)
(* ========================================================================= *)
needs "bool.ml";;
(* ------------------------------------------------------------------------- *)
(* Type of instantiations, with terms, types and higher-order data. *)
(* ------------------------------------------------------------------------- *)
type instantiation =
(int * term) list * (term * term) list * (hol_type * hol_type) list;;
(* ------------------------------------------------------------------------- *)
(* The last recourse when all else fails! *)
(* ------------------------------------------------------------------------- *)
let mk_thm(asl,c) =
let ax = new_axiom(itlist (curry mk_imp) (rev asl) c) in
rev_itlist (fun t th -> MP th (ASSUME t)) (rev asl) ax;;
(* ------------------------------------------------------------------------- *)
(* Derived congruence rules; very useful things! *)
(* ------------------------------------------------------------------------- *)
let MK_CONJ =
let andtm = `(/\)` in
fun eq1 eq2 -> MK_COMB(AP_TERM andtm eq1,eq2);;
let MK_DISJ =
let ortm = `(\/)` in
fun eq1 eq2 -> MK_COMB(AP_TERM ortm eq1,eq2);;
let MK_FORALL =
let atm = mk_const("!",[]) in
fun v th -> AP_TERM (inst [type_of v,aty] atm) (ABS v th);;
let MK_EXISTS =
let atm = mk_const("?",[]) in
fun v th -> AP_TERM (inst [type_of v,aty] atm) (ABS v th);;
(* ------------------------------------------------------------------------- *)
(* Eliminate the antecedent of a theorem using a conversion/proof rule. *)
(* ------------------------------------------------------------------------- *)
let MP_CONV (cnv:conv) th =
let l,r = dest_imp(concl th) in
let ath = cnv l in
try MP th (EQT_ELIM ath) with Failure _ -> MP th ath;;
(* ------------------------------------------------------------------------- *)
(* Multiple beta-reduction (we use a slight variant below). *)
(* ------------------------------------------------------------------------- *)
let rec BETAS_CONV tm =
match tm with
Comb(Abs(_,_),_) -> BETA_CONV tm
| Comb(Comb(_,_),_) -> (RATOR_CONV BETAS_CONV THENC BETA_CONV) tm
| _ -> failwith "BETAS_CONV";;
(* ------------------------------------------------------------------------- *)
(* Instantiators. *)
(* ------------------------------------------------------------------------- *)
let (instantiate :instantiation->term->term) =
let betas n tm =
let args,lam = funpow n (fun (l,t) -> (rand t)::l,rator t) ([],tm) in
rev_itlist (fun a l -> let v,b = dest_abs l in vsubst[a,v] b) args lam in
let rec ho_betas bcs pat tm =
if is_var pat || is_const pat then fail() else
try let bv,bod = dest_abs tm in
mk_abs(bv,ho_betas bcs (body pat) bod)
with Failure _ ->
let hop,args = strip_comb pat in
try let n = rev_assoc hop bcs in
if length args = n then betas n tm else fail()
with Failure _ ->
let lpat,rpat = dest_comb pat in
let ltm,rtm = dest_comb tm in
try let lth = ho_betas bcs lpat ltm in
try let rth = ho_betas bcs rpat rtm in
mk_comb(lth,rth)
with Failure _ ->
mk_comb(lth,rtm)
with Failure _ ->
let rth = ho_betas bcs rpat rtm in
mk_comb(ltm,rth) in
fun (bcs,tmin,tyin) tm ->
let itm = if tyin = [] then tm else inst tyin tm in
if tmin = [] then itm else
let ttm = vsubst tmin itm in
if bcs = [] then ttm else
try ho_betas bcs itm ttm with Failure _ -> ttm;;
let (INSTANTIATE : instantiation->thm->thm) =
let rec BETAS_CONV n tm =
if n = 1 then TRY_CONV BETA_CONV tm else
(RATOR_CONV (BETAS_CONV (n-1)) THENC
TRY_CONV BETA_CONV) tm in
let rec HO_BETAS bcs pat tm =
if is_var pat || is_const pat then fail() else
try let bv,bod = dest_abs tm in
ABS bv (HO_BETAS bcs (body pat) bod)
with Failure _ ->
let hop,args = strip_comb pat in
try let n = rev_assoc hop bcs in
if length args = n then BETAS_CONV n tm else fail()
with Failure _ ->
let lpat,rpat = dest_comb pat in
let ltm,rtm = dest_comb tm in
try let lth = HO_BETAS bcs lpat ltm in
try let rth = HO_BETAS bcs rpat rtm in
MK_COMB(lth,rth)
with Failure _ ->
AP_THM lth rtm
with Failure _ ->
let rth = HO_BETAS bcs rpat rtm in
AP_TERM ltm rth in
fun (bcs,tmin,tyin) th ->
let ith = if tyin = [] then th else INST_TYPE tyin th in
if tmin = [] then ith else
let tth = INST tmin ith in
if hyp tth = hyp th then
if bcs = [] then tth else
try let eth = HO_BETAS bcs (concl ith) (concl tth) in
EQ_MP eth tth
with Failure _ -> tth
else failwith "INSTANTIATE: term or type var free in assumptions";;
let (INSTANTIATE_ALL : instantiation->thm->thm) =
fun ((_,tmin,tyin) as i) th ->
if tmin = [] && tyin = [] then th else
let hyps = hyp th in
if hyps = [] then INSTANTIATE i th else
let tyrel,tyiirel =
if tyin = [] then [],hyps else
let tvs = itlist (union o tyvars o snd) tyin [] in
partition (fun tm -> let tvs' = type_vars_in_term tm in
not(intersect tvs tvs' = [])) hyps in
let tmrel,tmirrel =
if tmin = [] then [],tyiirel else
let vs = itlist (union o frees o snd) tmin [] in
partition (fun tm -> let vs' = frees tm in
not (intersect vs vs' = [])) tyiirel in
let rhyps = union tyrel tmrel in
let th1 = rev_itlist DISCH rhyps th in
let th2 = INSTANTIATE i th1 in
funpow (length rhyps) UNDISCH th2;;
(* ------------------------------------------------------------------------- *)
(* Higher order matching of terms. *)
(* *)
(* Note: in the event of spillover patterns, this may return false results; *)
(* but there's usually an implicit check outside that the match worked *)
(* anyway. A test could be put in (see if any "env" variables are left in *)
(* the term after abstracting out the pattern instances) but it'd be slower. *)
(* ------------------------------------------------------------------------- *)
let (term_match:term list -> term -> term -> instantiation) =
let safe_inserta ((y,x) as n) l =
try let z = rev_assoc x l in
if aconv y z then l else failwith "safe_inserta"
with Failure "find" -> n::l in
let safe_insert ((y,x) as n) l =
try let z = rev_assoc x l in
if compare y z = 0 then l else failwith "safe_insert"
with Failure "find" -> n::l in
let mk_dummy =
let name = fst(dest_var(genvar aty)) in
fun ty -> mk_var(name,ty) in
let rec term_pmatch lconsts env vtm ctm ((insts,homs) as sofar) =
match (vtm,ctm) with
Var(_,_),_ ->
(try let ctm' = rev_assoc vtm env in
if compare ctm' ctm = 0 then sofar
else failwith "term_pmatch"
with Failure "find" ->
if mem vtm lconsts then
if compare ctm vtm = 0 then sofar
else failwith "term_pmatch: can't instantiate local constant"
else safe_inserta (ctm,vtm) insts,homs)
| Const(vname,vty),Const(cname,cty) ->
if compare vname cname = 0 then
if compare vty cty = 0 then sofar
else safe_insert (mk_dummy cty,mk_dummy vty) insts,homs
else failwith "term_pmatch"
| Abs(vv,vbod),Abs(cv,cbod) ->
let sofar' = safe_insert
(mk_dummy(snd(dest_var cv)),mk_dummy(snd(dest_var vv))) insts,homs in
term_pmatch lconsts ((cv,vv)::env) vbod cbod sofar'
| _ ->
let vhop = repeat rator vtm in
if is_var vhop && not (mem vhop lconsts) &&
not (can (rev_assoc vhop) env) then
let vty = type_of vtm and cty = type_of ctm in
let insts' =
if compare vty cty = 0 then insts
else safe_insert (mk_dummy cty,mk_dummy vty) insts in
(insts',(env,ctm,vtm)::homs)
else
let lv,rv = dest_comb vtm
and lc,rc = dest_comb ctm in
let sofar' = term_pmatch lconsts env lv lc sofar in
term_pmatch lconsts env rv rc sofar' in
let get_type_insts insts =
itlist (fun (t,x) -> type_match (snd(dest_var x)) (type_of t)) insts in
let separate_insts insts =
let realinsts,patterns = partition (is_var o snd) insts in
let betacounts =
if patterns = [] then [] else
itlist
(fun (_,p) sof ->
let hop,args = strip_comb p in
try safe_insert (length args,hop) sof with Failure _ ->
(warn true "Inconsistent patterning in higher order match"; sof))
patterns [] in
let tyins = get_type_insts realinsts [] in
betacounts,
mapfilter (fun (t,x) ->
let x' = let xn,xty = dest_var x in
mk_var(xn,type_subst tyins xty) in
if compare t x' = 0 then fail() else (t,x')) realinsts,
tyins in
let rec term_homatch lconsts tyins (insts,homs) =
if homs = [] then insts else
let (env,ctm,vtm) = hd homs in
if is_var vtm then
if compare ctm vtm = 0
then term_homatch lconsts tyins (insts,tl homs) else
let newtyins = safe_insert (type_of ctm,snd(dest_var vtm)) tyins
and newinsts = (ctm,vtm)::insts in
term_homatch lconsts newtyins (newinsts,tl homs) else
let vhop,vargs = strip_comb vtm in
let afvs = freesl vargs in
let inst_fn = inst tyins in
try let tmins = map
(fun a -> (try rev_assoc a env with Failure _ -> try
rev_assoc a insts with Failure _ ->
if mem a lconsts then a else fail()),
inst_fn a) afvs in
let pats0 = map inst_fn vargs in
let pats = map (vsubst tmins) pats0 in
let vhop' = inst_fn vhop in
let ni =
let chop,cargs = strip_comb ctm in
if compare cargs pats = 0 then
if compare chop vhop = 0
then insts else safe_inserta (chop,vhop) insts else
let ginsts = map
(fun p -> (if is_var p then p else genvar(type_of p)),p) pats in
let ctm' = subst ginsts ctm
and gvs = map fst ginsts in
let abstm = list_mk_abs(gvs,ctm') in
let vinsts = safe_inserta (abstm,vhop) insts in
let icpair = ctm',list_mk_comb(vhop',gvs) in
icpair::vinsts in
term_homatch lconsts tyins (ni,tl homs)
with Failure _ ->
let lc,rc = dest_comb ctm
and lv,rv = dest_comb vtm in
let pinsts_homs' =
term_pmatch lconsts env rv rc (insts,(env,lc,lv)::(tl homs)) in
let tyins' = get_type_insts (fst pinsts_homs') [] in
term_homatch lconsts tyins' pinsts_homs' in
fun lconsts vtm ctm ->
let pinsts_homs = term_pmatch lconsts [] vtm ctm ([],[]) in
let tyins = get_type_insts (fst pinsts_homs) [] in
let insts = term_homatch lconsts tyins pinsts_homs in
separate_insts insts;;
(* ------------------------------------------------------------------------- *)
(* First order unification of terms of the same type. *)
(* ------------------------------------------------------------------------- *)
let (term_unify:term list -> term -> term -> instantiation) =
let augment1 sofar (s,x) =
let s' = subst sofar s in
if vfree_in x s' && not (s = x) then failwith "term_unify: augment1"
else (s',x) in
let raw_augment_insts p insts =
p::(map (augment1 [p]) insts) in
let augment_insts(t,v) insts =
let t' = vsubst insts t in
if t' = v then insts
else if vfree_in v t' then failwith "augment_insts"
else raw_augment_insts (t',v) insts in
let rec unify vars tm1 tm2 sofar =
if tm1 = tm2 then sofar
else if is_var tm1 && mem tm1 vars then
try let tm1' = rev_assoc tm1 sofar in
unify vars tm1' tm2 sofar
with Failure "find" ->
augment_insts (tm2,tm1) sofar
else if is_var tm2 && mem tm2 vars then
try let tm2' = rev_assoc tm2 sofar in
unify vars tm1 tm2' sofar
with Failure "find" ->
augment_insts (tm1,tm2) sofar
else if is_abs tm1 then
let tm1' = body tm1
and tm2' = subst [bndvar tm1,bndvar tm2] (body tm2) in
unify vars tm1' tm2' sofar
else
let l1,r1 = dest_comb tm1
and l2,r2 = dest_comb tm2 in
unify vars l1 l2 (unify vars r1 r2 sofar) in
fun vars tm1 tm2 -> [],unify vars tm1 tm2 [],[];;
(* ------------------------------------------------------------------------- *)
(* Unification of types. *)
(* ------------------------------------------------------------------------- *)
let type_unify : hol_type -> hol_type -> (hol_type * hol_type) list
-> (hol_type * hol_type) list =
let augment1 sofar (s,x) =
let s' = type_subst sofar s in
if occurs_in x s' && not (s = x) then failwith "type_unify: augment1"
else (s',x) in
let raw_augment_insts p insts =
p::(map (augment1 [p]) insts) in
let augment_insts(ty,v) insts =
let ty' = type_subst insts ty in
if ty' = v then insts
else if occurs_in v ty' then failwith "type_unify: augment_insts"
else raw_augment_insts (ty',v) insts in
let rec unify ty1 ty2 sofar =
if ty1 = ty2 then sofar
else if is_vartype ty1 then
try let ty1' = rev_assoc ty1 sofar in
unify ty1' ty2 sofar
with Failure "find" ->
augment_insts (ty2,ty1) sofar
else if is_vartype ty2 then
try let ty2' = rev_assoc ty2 sofar in
unify ty1 ty2' sofar
with Failure "find" ->
augment_insts (ty1,ty2) sofar
else
let l1,r1 = dest_type ty1
and l2,r2 = dest_type ty2 in
if l1 = l2 then itlist2 unify r1 r2 sofar
else failwith "unify_type" in
unify;;
(* ------------------------------------------------------------------------- *)
(* Unification of terms and their types together. *)
(* ------------------------------------------------------------------------- *)
let term_type_unify : term -> term -> instantiation -> instantiation =
let augment_tyinsts (s, t) tyinsts =
let sty = type_of (inst tyinsts s)
and tty = type_of (inst tyinsts t) in
let tyinsts' = type_unify sty tty [] in
tyinsts' @ map (fun (ty, v) -> type_subst tyinsts' ty, v) tyinsts in
let augment1 sofar (s,x) =
let s' = subst sofar s in
if vfree_in x s' && not (s = x) then failwith "term_unify: augment1"
else (s',x) in
let raw_augment_insts p (tminsts, tyinsts) =
p::(map (augment1 [p]) tminsts), tyinsts in
let augment_insts(t,v) (tminsts, tyinsts) =
let tminsts' = map (fun (t, v) -> inst tyinsts t, inst tyinsts v) tminsts in
let t' = inst tyinsts (vsubst tminsts' t) in
let v' = inst tyinsts v in
let sofar' = (tminsts', tyinsts) in
if t' = v' then sofar'
else if vfree_in v' t' then failwith "term_unify: augment_insts"
else raw_augment_insts (t',v') sofar' in
let rec unify tm1 tm2 (tminsts, tyinsts as sofar) =
if tm1 = tm2 then sofar
else if is_var tm1 then
try let tm1' = rev_assoc tm1 tminsts in
unify tm1' tm2 sofar
with Failure "find" ->
augment_insts (tm2,tm1) (tminsts, augment_tyinsts (tm1, tm2) tyinsts)
else if is_var tm2 then
try let tm2' = rev_assoc tm2 tminsts in
unify tm1 tm2' sofar
with Failure "find" ->
augment_insts (tm1,tm2) (tminsts, augment_tyinsts (tm1, tm2) tyinsts)
else if is_abs tm1 then
let tm1' = body tm1
and tm2' = subst [bndvar tm1,bndvar tm2] (body tm2) in
unify tm1' tm2' sofar
else if is_const tm1 then
if name_of tm1 <> name_of tm2 then failwith "term_unify"
else tminsts, augment_tyinsts (tm1, tm2) tyinsts
else
let l1,r1 = dest_comb tm1
and l2,r2 = dest_comb tm2 in
unify l1 l2 (unify r1 r2 sofar) in
fun tm1 tm2 (it, tminsts, tyinsts) ->
let tminsts', tyinsts' = unify tm1 tm2 (tminsts, tyinsts) in
it,tminsts',tyinsts';;
(* ------------------------------------------------------------------------- *)
(* Modify bound variable names at depth. (Not very efficient...) *)
(* ------------------------------------------------------------------------- *)
let deep_alpha =
let tryalpha v tm =
try alpha v tm
with Failure _ -> try
let v' = variant (frees tm) v in
alpha v' tm
with Failure _ -> tm in
let rec deep_alpha env tm =
if env = [] then tm else
try let v,bod = dest_abs tm in
let vn,vty = dest_var v in
try let (vn',_),newenv = remove (fun (_,x) -> x = vn) env in
let v' = mk_var(vn',vty) in
let tm' = tryalpha v' tm in
let iv,ib = dest_abs tm' in
mk_abs(iv,deep_alpha newenv ib)
with Failure _ -> mk_abs(v,deep_alpha env bod)
with Failure _ -> try
let l,r = dest_comb tm in
mk_comb(deep_alpha env l,deep_alpha env r)
with Failure _ -> tm in
deep_alpha;;
(* ------------------------------------------------------------------------- *)
(* Instantiate theorem by matching part of it to a term. *)
(* The GEN_PART_MATCH version renames free vars to avoid clashes. *)
(* ------------------------------------------------------------------------- *)
let PART_MATCH,GEN_PART_MATCH =
let rec match_bvs t1 t2 acc =
try let v1,b1 = dest_abs t1
and v2,b2 = dest_abs t2 in
let n1 = fst(dest_var v1) and n2 = fst(dest_var v2) in
let newacc = if n1 = n2 then acc else insert (n1,n2) acc in
match_bvs b1 b2 newacc
with Failure _ -> try
let l1,r1 = dest_comb t1
and l2,r2 = dest_comb t2 in
match_bvs l1 l2 (match_bvs r1 r2 acc)
with Failure _ -> acc in
let PART_MATCH partfn th =
let sth = SPEC_ALL th in
let bod = concl sth in
let pbod = partfn bod in
let lconsts = intersect (frees (concl th)) (freesl(hyp th)) in
fun tm ->
let bvms = match_bvs tm pbod [] in
let abod = deep_alpha bvms bod in
let ath = EQ_MP (ALPHA bod abod) sth in
let insts = term_match lconsts (partfn abod) tm in
let fth = INSTANTIATE insts ath in
if hyp fth <> hyp ath then failwith "PART_MATCH: instantiated hyps" else
let tm' = partfn (concl fth) in
if compare tm' tm = 0 then fth else
try SUBS[ALPHA tm' tm] fth
with Failure _ -> failwith "PART_MATCH: Sanity check failure"
and GEN_PART_MATCH partfn th =
let sth = SPEC_ALL th in
let bod = concl sth in
let pbod = partfn bod in
let lconsts = intersect (frees (concl th)) (freesl(hyp th)) in
let fvs = subtract (subtract (frees bod) (frees pbod)) lconsts in
fun tm ->
let bvms = match_bvs tm pbod [] in
let abod = deep_alpha bvms bod in
let ath = EQ_MP (ALPHA bod abod) sth in
let insts = term_match lconsts (partfn abod) tm in
let eth = INSTANTIATE insts (GENL fvs ath) in
let fth = itlist (fun v th -> snd(SPEC_VAR th)) fvs eth in
if hyp fth <> hyp ath then failwith "PART_MATCH: instantiated hyps" else
let tm' = partfn (concl fth) in
if compare tm' tm = 0 then fth else
try SUBS[ALPHA tm' tm] fth
with Failure _ -> failwith "PART_MATCH: Sanity check failure" in
PART_MATCH,GEN_PART_MATCH;;
(* ------------------------------------------------------------------------- *)
(* Matching modus ponens. *)
(* ------------------------------------------------------------------------- *)
let MATCH_MP ith =
let sth =
try let tm = concl ith in
let avs,bod = strip_forall tm in
let ant,con = dest_imp bod in
let svs,pvs = partition (C vfree_in ant) avs in
if pvs = [] then ith else
let th1 = SPECL avs (ASSUME tm) in
let th2 = GENL svs (DISCH ant (GENL pvs (UNDISCH th1))) in
MP (DISCH tm th2) ith
with Failure _ -> failwith "MATCH_MP: Not an implication" in
let match_fun = PART_MATCH (fst o dest_imp) sth in
fun th -> try MP (match_fun (concl th)) th
with Failure _ -> failwith "MATCH_MP: No match";;
(* ------------------------------------------------------------------------- *)
(* Useful instance of more general higher order matching. *)
(* ------------------------------------------------------------------------- *)
let HIGHER_REWRITE_CONV =
let BETA_VAR =
let rec BETA_CONVS n =
if n = 1 then TRY_CONV BETA_CONV else
RATOR_CONV (BETA_CONVS (n - 1)) THENC TRY_CONV BETA_CONV in
let rec free_beta v tm =
if is_abs tm then
let bv,bod = dest_abs tm in
if v = bv then failwith "unchanged" else
ABS_CONV(free_beta v bod) else
let op,args = strip_comb tm in
if args = [] then failwith "unchanged" else
if op = v then BETA_CONVS (length args) else
let l,r = dest_comb tm in
try let lconv = free_beta v l in
(try let rconv = free_beta v r in
COMB2_CONV lconv rconv
with Failure _ -> RATOR_CONV lconv)
with Failure _ -> RAND_CONV (free_beta v r) in
free_beta in
let GINST th =
let fvs = subtract (frees(concl th)) (freesl (hyp th)) in
let gvs = map (genvar o type_of) fvs in
INST (zip gvs fvs) th in
fun ths ->
let thl = map (GINST o SPEC_ALL) ths in
let concs = map concl thl in
let lefts = map lhs concs in
let preds,pats = unzip(map dest_comb lefts) in
let beta_fns = map2 BETA_VAR preds concs in
let ass_list = zip pats (zip preds (zip thl beta_fns)) in
let mnet = itlist (fun p n -> enter [] (p,p) n) pats empty_net in
let look_fn t =
mapfilter (fun p -> if can (term_match [] p) t then p else fail())
(lookup t mnet) in
fun top tm ->
let pred t = not (look_fn t = []) && free_in t tm in
let stm = if top then find_term pred tm
else hd(sort free_in (find_terms pred tm)) in
let pat = hd(look_fn stm) in
let _,tmin,tyin = term_match [] pat stm in
let pred,(th,beta_fn) = assoc pat ass_list in
let gv = genvar(type_of stm) in
let abs = mk_abs(gv,subst[gv,stm] tm) in
let _,tmin0,tyin0 = term_match [] pred abs in
CONV_RULE beta_fn (INST tmin (INST tmin0 (INST_TYPE tyin0 th)));;
(* ------------------------------------------------------------------------- *)
(* Derived principle of definition justifying |- c x1 .. xn = t[x1,..,xn] *)
(* ------------------------------------------------------------------------- *)
let new_definition tm =
let avs,bod = strip_forall tm in
let l,r = try dest_eq bod
with Failure _ -> failwith "new_definition: Not an equation" in
let lv,largs = strip_comb l in
let rtm = try list_mk_abs(largs,r)
with Failure _ -> failwith "new_definition: Non-variable in LHS pattern" in
let def = mk_eq(lv,rtm) in
let th1 = new_basic_definition def in
let th2 = rev_itlist
(fun tm th -> let ith = AP_THM th tm in
TRANS ith (BETA_CONV(rand(concl ith)))) largs th1 in
let rvs = filter (not o C mem avs) largs in
itlist GEN rvs (itlist GEN avs th2);;