-
Notifications
You must be signed in to change notification settings - Fork 31
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Test Performance for Large Reaction Mechanism #9
Labels
enhancement
New feature or request
Comments
@Zeracesharon I think a good trial would be this mechanism: https://github.com/jiweiqi/CollectionOfMechanisms/tree/master/i-Octane_C8H18/llnl_version3. You may need to convert the XML mechanism to the YAML format. You can find out how to convert it from Cantera. |
Solve the issue of tiny value induced sparsity degradation TYdot_zero = torch.zeros_like(TYdot).to(device)
TYdot=torch.where(TYdot.abs() > 1e-30, TYdot, TYdot_zero) |
GPU Testing Code """
Solve a constant pressure ignition problem where the governing equations are
implemented in Python.
This demonstrates an approach for solving problems where Cantera's reactor
network model cannot be configured to describe the system in question. Here,
Cantera is used for evaluating thermodynamic properties and kinetic rates while
an external ODE solver is used to integrate the resulting equations. In this
case, the SciPy wrapper for VODE is used, which uses the same variable-order BDF
methods as the Sundials CVODES solver used by Cantera.
"""
# TODO: the reactorch class seems to be very slow here, will figure out later
import cantera as ct
import numpy as np
import reactorch as rt
from scipy.integrate import solve_ivp
import torch
from torch.autograd.functional import jacobian as jacobian
device = torch.device('cuda:0')
# device = torch.device('cpu')
torch.set_default_tensor_type("torch.DoubleTensor")
class ReactorOde(object):
def __init__(self, gas):
# Parameters of the ODE system and auxiliary data are stored in the
# ReactorOde object.
self.gas = gas
self.P = gas.P
def __call__(self, t, y):
"""the ODE function, y' = f(t,y) """
# State vector is [T, Y_1, Y_2, ... Y_K]
self.gas.set_unnormalized_mass_fractions(y[1:])
self.gas.TP = y[0], self.P
rho = self.gas.density
wdot = self.gas.net_production_rates
dTdt = - (np.dot(self.gas.partial_molar_enthalpies, wdot) /
(rho * self.gas.cp))
dYdt = wdot * self.gas.molecular_weights / rho
return np.hstack((dTdt, dYdt))
class ReactorOdeRT(object):
def __init__(self, sol):
# Parameters of the ODE system and auxiliary data are stored in the
# ReactorOde object.
self.sol = sol
self.gas = sol.gas
def __call__(self, t, y):
"""the ODE function, y' = f(t,y) """
TPY = torch.Tensor(y).T.to(device)
with torch.no_grad():
self.sol.set_states(TPY)
TYdot = self.sol.TYdot_func()
TYdot_zero = torch.zeros_like(TYdot).to(device)
TYdot=torch.where(TYdot.abs() > 1e-20, TYdot, TYdot_zero)
return TYdot.T.cpu().numpy()
def TYdot_jac(self, TPY):
TPY = torch.Tensor(TPY).unsqueeze(0)
sol.set_states(TPY)
return sol.TYdot_func().squeeze(0)
def jac(self, t, y):
TPY = torch.Tensor(y)
TPY.requires_grad = True
jac_ = jacobian(self.TYdot_jac, TPY, create_graph=False)
return jac_
# mech_yaml = '../../data/gri30.yaml'
mech_yaml = 'ic8_ver3_mech.yaml'
sol = rt.Solution(mech_yaml=mech_yaml, vectorize=False, device=device)
gas = ct.Solution(mech_yaml)
# Initial condition
P = ct.one_atm * 1
T = 1800
composition = 'IC8H18:0.4,O2:12.5,N2:40'
gas.TPX = T, P, composition
y0 = np.hstack((gas.T, gas.Y))
# Set up objects representing the ODE and the solver
ode = ReactorOde(gas)
# Integrate the equations using Cantera
t_end = 5e-6
states = ct.SolutionArray(gas, 1, extra={'t': [0.0]})
dt = 1e-6
t = 0
ode_success = True
y = y0
while ode_success and t < t_end:
odesol = solve_ivp(ode,
t_span=(t, t + dt),
y0=y,
method='BDF',
vectorized=False, jac=None)
t = odesol.t[-1]
y = odesol.y[:, -1]
ode_successful = odesol.success
print('t {:.2e} T {:.3f} nfev {} njev {}'.format(t, y[0], odesol.nfev, odesol.njev))
gas.TPY = odesol.y[0, -1], P, odesol.y[1:, -1]
states.append(gas.state, t=t)
sol.gas.TPX = T, P, composition
sol.set_pressure(sol.gas.P)
ode_rt = ReactorOdeRT(sol=sol)
print('finish cantera integration')
# Integrate the equations using ReacTorch
states_rt = ct.SolutionArray(sol.gas, 1, extra={'t': [0.0]})
t = 0
ode_success = True
y = y0
# Diable AD for jacobian seems more effient for this case.
while ode_success and t < t_end:
odesol = solve_ivp(ode_rt,
t_span=(t, t + dt),
y0=y,
method='BDF',
vectorized=True, jac=None)
t = odesol.t[-1]
y = odesol.y[:, -1]
ode_successful = odesol.success
print('t {:.2e} T {:.3f} nfev {} njev {}'.format(t, y[0], odesol.nfev, odesol.njev))
sol.gas.TPY = odesol.y[0, -1], P, odesol.y[1:, -1]
states_rt.append(sol.gas.state, t=t)
# Plot the results
try:
import matplotlib.pyplot as plt
L1 = plt.plot(states.t, states.T, ls='--',
color='r', label='T Cantera', lw=1)
L1_rt = plt.plot(states_rt.t, states_rt.T, ls='-',
color='r', label='T ReacTorch', lw=1)
plt.xlabel('Time (s)')
plt.ylabel('Temperature (K)')
plt.twinx()
L2 = plt.plot(states.t, states('OH').Y, ls='--', label='OH Cantera', lw=1)
L2_rt = plt.plot(states_rt.t, states_rt('OH').Y,
ls='-',
label='OH ReacTorch',
lw=1)
plt.ylabel('Mass Fraction')
plt.legend(L1+L2+L1_rt+L2_rt, [line.get_label()
for line in L1+L2+L1_rt+L2_rt], loc='best')
plt.savefig('cantera_reactorch_validation.png', dpi=300)
plt.show()
except ImportError:
print('Matplotlib not found. Unable to plot results.') |
"""
Solve a constant pressure ignition problem where the governing equations are
implemented in Python.
This demonstrates an approach for solving problems where Cantera's reactor
network model cannot be configured to describe the system in question. Here,
Cantera is used for evaluating thermodynamic properties and kinetic rates while
an external ODE solver is used to integrate the resulting equations. In this
case, the SciPy wrapper for VODE is used, which uses the same variable-order BDF
methods as the Sundials CVODES solver used by Cantera.
"""
# TODO: the reactorch class seems to be very slow here, will figure out later
import cantera as ct
import numpy as np
import reactorch as rt
from scipy.integrate import solve_ivp
import torch
from torch.autograd.functional import jacobian as jacobian
device = torch.device('cuda:0')
# device = torch.device('cpu')
torch.set_default_tensor_type("torch.DoubleTensor")
class ReactorOde(object):
def __init__(self, gas):
# Parameters of the ODE system and auxiliary data are stored in the
# ReactorOde object.
self.gas = gas
self.P = gas.P
def __call__(self, t, y):
"""the ODE function, y' = f(t,y) """
# State vector is [T, Y_1, Y_2, ... Y_K]
self.gas.set_unnormalized_mass_fractions(y[1:])
self.gas.TP = y[0], self.P
rho = self.gas.density
wdot = self.gas.net_production_rates
dTdt = - (np.dot(self.gas.partial_molar_enthalpies, wdot) /
(rho * self.gas.cp))
dYdt = wdot * self.gas.molecular_weights / rho
return np.hstack((dTdt, dYdt))
class ReactorOdeRT(object):
def __init__(self, sol):
# Parameters of the ODE system and auxiliary data are stored in the
# ReactorOde object.
self.sol = sol
self.gas = sol.gas
def __call__(self, t, y):
"""the ODE function, y' = f(t,y) """
TPY = torch.Tensor(y).T.to(device)
with torch.no_grad():
self.sol.set_states(TPY)
TYdot = self.sol.TYdot_func()
TYdot_zero = torch.zeros_like(TYdot).to(device)
TYdot = torch.where(TYdot.abs() > 1e-30, TYdot, TYdot_zero)
return TYdot.T.cpu().numpy()
# mech_yaml = '../../data/gri30.yaml'
mech_yaml = 'ic8_ver3_mech.yaml'
sol = rt.Solution(mech_yaml=mech_yaml, vectorize=False, device=device)
gas = ct.Solution(mech_yaml)
# Initial condition
P = ct.one_atm * 1
T = 1800
composition = 'IC8H18:0.4,O2:12.5,N2:40'
gas.TPX = T, P, composition
y0 = np.hstack((gas.T, gas.Y))
# Set up objects representing the ODE and the solver
ode = ReactorOde(gas)
# Integrate the equations using Cantera
t_end = 5e-6
states = ct.SolutionArray(gas, 1, extra={'t': [0.0]})
dt = 1e-6
t = 0
ode_success = True
y = y0
while ode_success and t < t_end:
odesol = solve_ivp(ode,
t_span=(t, t + dt),
y0=y,
method='BDF',
# rtol=1e-9, atol=1e-12,
vectorized=False, jac=None)
t = odesol.t[-1]
y = odesol.y[:, -1]
ode_successful = odesol.success
print('t {:.2e} T {:.3f} nfev {} njev {}'.format(t, y[0], odesol.nfev, odesol.njev))
gas.TPY = odesol.y[0, -1], P, odesol.y[1:, -1]
states.append(gas.state, t=t)
sol.gas.TPX = T, P, composition
sol.set_pressure(sol.gas.P)
ode_rt = ReactorOdeRT(sol=sol)
print('finish cantera integration')
# Integrate the equations using ReacTorch
states_rt = ct.SolutionArray(sol.gas, 1, extra={'t': [0.0]})
t = 0
ode_success = True
y = y0
# Diable AD for jacobian seems more effient for this case.
while ode_success and t < t_end:
odesol = solve_ivp(ode_rt,
t_span=(t, t + dt),
y0=y,
method='BDF',
# rtol=1e-9, atol=1e-12,
vectorized=True, jac=None)
t = odesol.t[-1]
y = odesol.y[:, -1]
ode_successful = odesol.success
print('t {:.2e} T {:.3f} nfev {} njev {}'.format(t, y[0], odesol.nfev, odesol.njev))
sol.gas.TPY = odesol.y[0, -1], P, odesol.y[1:, -1]
states_rt.append(sol.gas.state, t=t)
# Plot the results
try:
import matplotlib.pyplot as plt
L1 = plt.plot(states.t, states.T, ls='--',
color='r', label='T Cantera', lw=1)
L1_rt = plt.plot(states_rt.t, states_rt.T, ls='-',
color='r', label='T ReacTorch', lw=1)
plt.xlabel('Time (s)')
plt.ylabel('Temperature (K)')
plt.twinx()
L2 = plt.plot(states.t, states('OH').Y, ls='--', label='OH Cantera', lw=1)
L2_rt = plt.plot(states_rt.t, states_rt('OH').Y,
ls='-',
label='OH ReacTorch',
lw=1)
plt.ylabel('Mass Fraction')
plt.legend(L1+L2+L1_rt+L2_rt, [line.get_label()
for line in L1+L2+L1_rt+L2_rt], loc='best')
plt.savefig('cantera_reactorch_validation.png', dpi=300)
plt.show()
except ImportError:
print('Matplotlib not found. Unable to plot results.') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
For example, LLNL iso-octane mechanism
Including single call of wdot, auto-ignition, Jac evaluation
The text was updated successfully, but these errors were encountered: