-
Notifications
You must be signed in to change notification settings - Fork 125
/
dataloader_lsmdc_retrieval.py
208 lines (178 loc) · 8.96 KB
/
dataloader_lsmdc_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
import os
from torch.utils.data import Dataset
import numpy as np
import json
import math
from dataloaders.rawvideo_util import RawVideoExtractor
class LSMDC_DataLoader(Dataset):
"""LSMDC dataset loader."""
def __init__(
self,
subset,
data_path,
features_path,
tokenizer,
max_words=30,
feature_framerate=1.0,
max_frames=100,
image_resolution=224,
frame_order=0,
slice_framepos=0,
):
self.data_path = data_path
self.features_path = features_path
self.feature_framerate = feature_framerate
self.max_words = max_words
self.max_frames = max_frames
self.tokenizer = tokenizer
# 0: ordinary order; 1: reverse order; 2: random order.
self.frame_order = frame_order
assert self.frame_order in [0, 1, 2]
# 0: cut from head frames; 1: cut from tail frames; 2: extract frames uniformly.
self.slice_framepos = slice_framepos
assert self.slice_framepos in [0, 1, 2]
self.subset = subset
assert self.subset in ["train", "val", "test"]
video_json_path_dict = {}
video_json_path_dict["train"] = os.path.join(self.data_path, "LSMDC16_annos_training.csv")
video_json_path_dict["val"] = os.path.join(self.data_path, "LSMDC16_annos_val.csv")
video_json_path_dict["test"] = os.path.join(self.data_path, "LSMDC16_challenge_1000_publictect.csv")
# <CLIP_ID>\t<START_ALIGNED>\t<END_ALIGNED>\t<START_EXTRACTED>\t<END_EXTRACTED>\t<SENTENCE>
# <CLIP_ID> is not a unique identifier, i.e. the same <CLIP_ID> can be associated with multiple sentences.
# However, LSMDC16_challenge_1000_publictect.csv has no repeat instances
video_id_list = []
caption_dict = {}
with open(video_json_path_dict[self.subset], 'r') as fp:
for line in fp:
line = line.strip()
line_split = line.split("\t")
assert len(line_split) == 6
clip_id, start_aligned, end_aligned, start_extracted, end_extracted, sentence = line_split
caption_dict[len(caption_dict)] = (clip_id, sentence)
if clip_id not in video_id_list: video_id_list.append(clip_id)
video_dict = {}
for root, dub_dir, video_files in os.walk(self.features_path):
for video_file in video_files:
video_id_ = ".".join(video_file.split(".")[:-1])
if video_id_ not in video_id_list:
continue
file_path_ = os.path.join(root, video_file)
video_dict[video_id_] = file_path_
self.video_dict = video_dict
# Get all captions
self.iter2video_pairs_dict = {}
for clip_id, sentence in caption_dict.values():
if clip_id not in self.video_dict:
continue
self.iter2video_pairs_dict[len(self.iter2video_pairs_dict)] = (clip_id, sentence)
self.rawVideoExtractor = RawVideoExtractor(framerate=feature_framerate, size=image_resolution)
self.SPECIAL_TOKEN = {"CLS_TOKEN": "<|startoftext|>", "SEP_TOKEN": "<|endoftext|>",
"MASK_TOKEN": "[MASK]", "UNK_TOKEN": "[UNK]", "PAD_TOKEN": "[PAD]"}
def __len__(self):
return len(self.iter2video_pairs_dict)
def _get_video_id_from_pseduo(self, pseudo_video_id):
video_id = pseudo_video_id[2:]
return video_id
def _get_video_id_single(self, path):
pseudo_video_id_list = []
video_id_list = []
print('Loading json: {}'.format(path))
with open(path, 'r') as f:
json_data = json.load(f)
for pseudo_video_id in json_data:
if pseudo_video_id in pseudo_video_id_list:
print("reduplicate.")
else:
video_id = self._get_video_id_from_pseduo(pseudo_video_id)
pseudo_video_id_list.append(pseudo_video_id)
video_id_list.append(video_id)
return pseudo_video_id_list, video_id_list
def _get_captions_single(self, path):
pseudo_caption_dict = {}
with open(path, 'r') as f:
json_data = json.load(f)
for pseudo_video_id, v_ in json_data.items():
pseudo_caption_dict[pseudo_video_id] = {}
timestamps = v_["timestamps"]
pseudo_caption_dict[pseudo_video_id]["start"] = \
np.array([int(math.floor(float(itm[0]))) for itm in timestamps], dtype=object)
pseudo_caption_dict[pseudo_video_id]["end"] = \
np.array([int(math.ceil(float(itm[1]))) for itm in timestamps], dtype=object)
pseudo_caption_dict[pseudo_video_id]["text"] = np.array(v_["sentences"], dtype=object)
return pseudo_caption_dict
def _get_text(self, video_id, caption):
k = 1
choice_video_ids = [video_id]
pairs_text = np.zeros((k, self.max_words), dtype=np.long)
pairs_mask = np.zeros((k, self.max_words), dtype=np.long)
pairs_segment = np.zeros((k, self.max_words), dtype=np.long)
for i, video_id in enumerate(choice_video_ids):
words = self.tokenizer.tokenize(caption)
words = [self.SPECIAL_TOKEN["CLS_TOKEN"]] + words
total_length_with_CLS = self.max_words - 1
if len(words) > total_length_with_CLS:
words = words[:total_length_with_CLS]
words = words + [self.SPECIAL_TOKEN["SEP_TOKEN"]]
input_ids = self.tokenizer.convert_tokens_to_ids(words)
input_mask = [1] * len(input_ids)
segment_ids = [0] * len(input_ids)
while len(input_ids) < self.max_words:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == self.max_words
assert len(input_mask) == self.max_words
assert len(segment_ids) == self.max_words
pairs_text[i] = np.array(input_ids)
pairs_mask[i] = np.array(input_mask)
pairs_segment[i] = np.array(segment_ids)
return pairs_text, pairs_mask, pairs_segment, choice_video_ids
def _get_rawvideo(self, choice_video_ids):
video_mask = np.zeros((len(choice_video_ids), self.max_frames), dtype=np.long)
max_video_length = [0] * len(choice_video_ids)
# Pair x L x T x 3 x H x W
video = np.zeros((len(choice_video_ids), self.max_frames, 1, 3,
self.rawVideoExtractor.size, self.rawVideoExtractor.size), dtype=np.float)
try:
for i, video_id in enumerate(choice_video_ids):
video_path = self.video_dict[video_id]
raw_video_data = self.rawVideoExtractor.get_video_data(video_path)
raw_video_data = raw_video_data['video']
if len(raw_video_data.shape) > 3:
raw_video_data_clip = raw_video_data
# L x T x 3 x H x W
raw_video_slice = self.rawVideoExtractor.process_raw_data(raw_video_data_clip)
if self.max_frames < raw_video_slice.shape[0]:
if self.slice_framepos == 0:
video_slice = raw_video_slice[:self.max_frames, ...]
elif self.slice_framepos == 1:
video_slice = raw_video_slice[-self.max_frames:, ...]
else:
sample_indx = np.linspace(0, raw_video_slice.shape[0]-1, num=self.max_frames, dtype=int)
video_slice = raw_video_slice[sample_indx, ...]
else:
video_slice = raw_video_slice
video_slice = self.rawVideoExtractor.process_frame_order(video_slice, frame_order=self.frame_order)
slice_len = video_slice.shape[0]
max_video_length[i] = max_video_length[i] if max_video_length[i] > slice_len else slice_len
if slice_len < 1:
pass
else:
video[i][:slice_len, ...] = video_slice
else:
print("video path: {} error. video id: {}".format(video_path, video_id))
except Exception as excep:
print("Video ids: {}".format(choice_video_ids))
raise excep
for i, v_length in enumerate(max_video_length):
video_mask[i][:v_length] = [1] * v_length
return video, video_mask
def __getitem__(self, feature_idx):
clip_id, sentence = self.iter2video_pairs_dict[feature_idx]
pairs_text, pairs_mask, pairs_segment, choice_video_ids = self._get_text(clip_id, sentence)
video, video_mask = self._get_rawvideo(choice_video_ids)
return pairs_text, pairs_mask, pairs_segment, video, video_mask