You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
`model = create_model_test(args, load_head=True).cuda()
########### eliminate BN for faster inference ###########
model.load_state_dict(torch.load(args.model_path, map_location='cpu'))
model = model.cpu()
model = InplacABN_to_ABN(model)
model = fuse_bn_recursively(model)
model = model.cpu()
`
but when i deployed this on a cpu server
it comes with an error:
Traceback (most recent call last): File "infer_xxx.py", line 97, in <module> main() File "infer_xxx.py", line 82, in main output = torch.squeeze(torch.sigmoid(model2(tensor_batch))) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/jovyan/Multilabel/code/ML_Decoder/src_files/models/tresnet/tresnet.py", line 204, in forward x = self.body(x) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/container.py", line 139, in forward input = module(input) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/container.py", line 139, in forward input = module(input) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/jovyan/Multilabel/code/ML_Decoder/src_files/models/tresnet/tresnet.py", line 120, in forward out = self.conv2(out) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/container.py", line 139, in forward input = module(input) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/jovyan/Multilabel/code/ML_Decoder/src_files/models/tresnet/layers/anti_aliasing.py", line 18, in forward return self.op(x) File "/home/jovyan/Multilabel/code/ML_Decoder/src_files/models/tresnet/layers/anti_aliasing.py", line 40, in __call__ return F.conv2d(input_pad, self.filt, stride=2, padding=0, groups=input.shape[1]) RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
i dont know how i can use it in cpu
The text was updated successfully, but these errors were encountered:
here is my code
but when i deployed this on a cpu server
it comes with an error:
Traceback (most recent call last): File "infer_xxx.py", line 97, in <module> main() File "infer_xxx.py", line 82, in main output = torch.squeeze(torch.sigmoid(model2(tensor_batch))) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/jovyan/Multilabel/code/ML_Decoder/src_files/models/tresnet/tresnet.py", line 204, in forward x = self.body(x) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/container.py", line 139, in forward input = module(input) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/container.py", line 139, in forward input = module(input) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/jovyan/Multilabel/code/ML_Decoder/src_files/models/tresnet/tresnet.py", line 120, in forward out = self.conv2(out) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/container.py", line 139, in forward input = module(input) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/jovyan/Multilabel/code/ML_Decoder/src_files/models/tresnet/layers/anti_aliasing.py", line 18, in forward return self.op(x) File "/home/jovyan/Multilabel/code/ML_Decoder/src_files/models/tresnet/layers/anti_aliasing.py", line 40, in __call__ return F.conv2d(input_pad, self.filt, stride=2, padding=0, groups=input.shape[1]) RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
i dont know how i can use it in cpu
The text was updated successfully, but these errors were encountered: