forked from pjreddie/darknet
-
Notifications
You must be signed in to change notification settings - Fork 8k
/
yolo_v2_class.hpp
1053 lines (855 loc) · 38.7 KB
/
yolo_v2_class.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef YOLO_V2_CLASS_HPP
#define YOLO_V2_CLASS_HPP
#ifndef LIB_API
#ifdef LIB_EXPORTS
#if defined(_MSC_VER)
#define LIB_API __declspec(dllexport)
#else
#define LIB_API __attribute__((visibility("default")))
#endif
#else
#if defined(_MSC_VER)
#define LIB_API
#else
#define LIB_API
#endif
#endif
#endif
#define C_SHARP_MAX_OBJECTS 1000
struct bbox_t {
unsigned int x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box
float prob; // confidence - probability that the object was found correctly
unsigned int obj_id; // class of object - from range [0, classes-1]
unsigned int track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object)
unsigned int frames_counter; // counter of frames on which the object was detected
float x_3d, y_3d, z_3d; // center of object (in Meters) if ZED 3D Camera is used
};
struct image_t {
int h; // height
int w; // width
int c; // number of chanels (3 - for RGB)
float *data; // pointer to the image data
};
struct bbox_t_container {
bbox_t candidates[C_SHARP_MAX_OBJECTS];
};
#ifdef __cplusplus
#include <memory>
#include <vector>
#include <deque>
#include <algorithm>
#include <chrono>
#include <string>
#include <sstream>
#include <iostream>
#include <cmath>
#ifdef OPENCV
#include <opencv2/opencv.hpp> // C++
#include <opencv2/highgui/highgui_c.h> // C
#include <opencv2/imgproc/imgproc_c.h> // C
#endif
extern "C" LIB_API int init(const char *configurationFilename, const char *weightsFilename, int gpu, int batch_size);
extern "C" LIB_API int detect_image(const char *filename, bbox_t_container &container);
extern "C" LIB_API int detect_mat(const uint8_t* data, const size_t data_length, bbox_t_container &container);
extern "C" LIB_API int dispose();
extern "C" LIB_API int get_device_count();
extern "C" LIB_API int get_device_name(int gpu, char* deviceName);
extern "C" LIB_API bool built_with_cuda();
extern "C" LIB_API bool built_with_cudnn();
extern "C" LIB_API bool built_with_opencv();
extern "C" LIB_API void send_json_custom(char const* send_buf, int port, int timeout);
class Detector {
std::shared_ptr<void> detector_gpu_ptr;
std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
std::string _cfg_filename, _weight_filename;
public:
const int cur_gpu_id;
float nms = .4;
bool wait_stream;
LIB_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0, int batch_size = 1);
LIB_API ~Detector();
LIB_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
LIB_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
LIB_API std::vector<std::vector<bbox_t>> detectBatch(image_t img, int batch_size, int width, int height, float thresh, bool make_nms = true);
static LIB_API image_t load_image(std::string image_filename);
static LIB_API void free_image(image_t m);
LIB_API int get_net_width() const;
LIB_API int get_net_height() const;
LIB_API int get_net_color_depth() const;
LIB_API std::vector<bbox_t> tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history = true,
int const frames_story = 5, int const max_dist = 40);
LIB_API void *get_cuda_context();
//LIB_API bool send_json_http(std::vector<bbox_t> cur_bbox_vec, std::vector<std::string> obj_names, int frame_id,
// std::string filename = std::string(), int timeout = 400000, int port = 8070);
std::vector<bbox_t> detect_resized(image_t img, int init_w, int init_h, float thresh = 0.2, bool use_mean = false)
{
if (img.data == NULL)
throw std::runtime_error("Image is empty");
auto detection_boxes = detect(img, thresh, use_mean);
float wk = (float)init_w / img.w, hk = (float)init_h / img.h;
for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
return detection_boxes;
}
#ifdef OPENCV
std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false)
{
if(mat.data == NULL)
throw std::runtime_error("Image is empty");
auto image_ptr = mat_to_image_resize(mat);
return detect_resized(*image_ptr, mat.cols, mat.rows, thresh, use_mean);
}
std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const
{
if (mat.data == NULL) return std::shared_ptr<image_t>(NULL);
cv::Size network_size = cv::Size(get_net_width(), get_net_height());
cv::Mat det_mat;
if (mat.size() != network_size)
cv::resize(mat, det_mat, network_size);
else
det_mat = mat; // only reference is copied
return mat_to_image(det_mat);
}
static std::shared_ptr<image_t> mat_to_image(cv::Mat img_src)
{
cv::Mat img;
if (img_src.channels() == 4) cv::cvtColor(img_src, img, cv::COLOR_RGBA2BGR);
else if (img_src.channels() == 3) cv::cvtColor(img_src, img, cv::COLOR_RGB2BGR);
else if (img_src.channels() == 1) cv::cvtColor(img_src, img, cv::COLOR_GRAY2BGR);
else std::cerr << " Warning: img_src.channels() is not 1, 3 or 4. It is = " << img_src.channels() << std::endl;
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
*image_ptr = mat_to_image_custom(img);
return image_ptr;
}
private:
static image_t mat_to_image_custom(cv::Mat mat)
{
int w = mat.cols;
int h = mat.rows;
int c = mat.channels();
image_t im = make_image_custom(w, h, c);
unsigned char *data = (unsigned char *)mat.data;
int step = mat.step;
for (int y = 0; y < h; ++y) {
for (int k = 0; k < c; ++k) {
for (int x = 0; x < w; ++x) {
im.data[k*w*h + y*w + x] = data[y*step + x*c + k] / 255.0f;
}
}
}
return im;
}
static image_t make_empty_image(int w, int h, int c)
{
image_t out;
out.data = 0;
out.h = h;
out.w = w;
out.c = c;
return out;
}
static image_t make_image_custom(int w, int h, int c)
{
image_t out = make_empty_image(w, h, c);
out.data = (float *)calloc(h*w*c, sizeof(float));
return out;
}
#endif // OPENCV
public:
bool send_json_http(std::vector<bbox_t> cur_bbox_vec, std::vector<std::string> obj_names, int frame_id,
std::string filename = std::string(), int timeout = 400000, int port = 8070)
{
std::string send_str;
char *tmp_buf = (char *)calloc(1024, sizeof(char));
if (!filename.empty()) {
sprintf(tmp_buf, "{\n \"frame_id\":%d, \n \"filename\":\"%s\", \n \"objects\": [ \n", frame_id, filename.c_str());
}
else {
sprintf(tmp_buf, "{\n \"frame_id\":%d, \n \"objects\": [ \n", frame_id);
}
send_str = tmp_buf;
free(tmp_buf);
for (auto & i : cur_bbox_vec) {
char *buf = (char *)calloc(2048, sizeof(char));
sprintf(buf, " {\"class_id\":%d, \"name\":\"%s\", \"absolute_coordinates\":{\"center_x\":%d, \"center_y\":%d, \"width\":%d, \"height\":%d}, \"confidence\":%f",
i.obj_id, obj_names[i.obj_id].c_str(), i.x, i.y, i.w, i.h, i.prob);
//sprintf(buf, " {\"class_id\":%d, \"name\":\"%s\", \"relative_coordinates\":{\"center_x\":%f, \"center_y\":%f, \"width\":%f, \"height\":%f}, \"confidence\":%f",
// i.obj_id, obj_names[i.obj_id], i.x, i.y, i.w, i.h, i.prob);
send_str += buf;
if (!std::isnan(i.z_3d)) {
sprintf(buf, "\n , \"coordinates_in_meters\":{\"x_3d\":%.2f, \"y_3d\":%.2f, \"z_3d\":%.2f}",
i.x_3d, i.y_3d, i.z_3d);
send_str += buf;
}
send_str += "}\n";
free(buf);
}
//send_str += "\n ] \n}, \n";
send_str += "\n ] \n}";
send_json_custom(send_str.c_str(), port, timeout);
return true;
}
};
// --------------------------------------------------------------------------------
#if defined(TRACK_OPTFLOW) && defined(OPENCV) && defined(GPU)
#include <opencv2/cudaoptflow.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/cudaarithm.hpp>
#include <opencv2/core/cuda.hpp>
class Tracker_optflow {
public:
const int gpu_count;
const int gpu_id;
const int flow_error;
Tracker_optflow(int _gpu_id = 0, int win_size = 15, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
gpu_count(cv::cuda::getCudaEnabledDeviceCount()), gpu_id(std::min(_gpu_id, gpu_count-1)),
flow_error((_flow_error > 0)? _flow_error:(win_size*4))
{
int const old_gpu_id = cv::cuda::getDevice();
cv::cuda::setDevice(gpu_id);
stream = cv::cuda::Stream();
sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create();
sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(win_size, win_size)); // 9, 15, 21, 31
sync_PyrLKOpticalFlow_gpu->setMaxLevel(max_level); // +- 3 pt
sync_PyrLKOpticalFlow_gpu->setNumIters(iterations); // 2000, def: 30
cv::cuda::setDevice(old_gpu_id);
}
// just to avoid extra allocations
cv::cuda::GpuMat src_mat_gpu;
cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu;
cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu;
cv::cuda::GpuMat status_gpu, err_gpu;
cv::cuda::GpuMat src_grey_gpu; // used in both functions
cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu;
cv::cuda::Stream stream;
std::vector<bbox_t> cur_bbox_vec;
std::vector<bool> good_bbox_vec_flags;
cv::Mat prev_pts_flow_cpu;
void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
{
cur_bbox_vec = _cur_bbox_vec;
good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true);
cv::Mat prev_pts, cur_pts_flow_cpu;
for (auto &i : cur_bbox_vec) {
float x_center = (i.x + i.w / 2.0F);
float y_center = (i.y + i.h / 2.0F);
prev_pts.push_back(cv::Point2f(x_center, y_center));
}
if (prev_pts.rows == 0)
prev_pts_flow_cpu = cv::Mat();
else
cv::transpose(prev_pts, prev_pts_flow_cpu);
if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) {
prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1);
err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1);
}
prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream);
}
void update_tracking_flow(cv::Mat src_mat, std::vector<bbox_t> _cur_bbox_vec)
{
int const old_gpu_id = cv::cuda::getDevice();
if (old_gpu_id != gpu_id)
cv::cuda::setDevice(gpu_id);
if (src_mat.channels() == 1 || src_mat.channels() == 3 || src_mat.channels() == 4) {
if (src_mat_gpu.cols == 0) {
src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type());
src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1);
}
if (src_mat.channels() == 1) {
src_mat_gpu.upload(src_mat, stream);
src_mat_gpu.copyTo(src_grey_gpu);
}
else if (src_mat.channels() == 3) {
src_mat_gpu.upload(src_mat, stream);
cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 1, stream);
}
else if (src_mat.channels() == 4) {
src_mat_gpu.upload(src_mat, stream);
cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGRA2GRAY, 1, stream);
}
else {
std::cerr << " Warning: src_mat.channels() is not: 1, 3 or 4. It is = " << src_mat.channels() << " \n";
return;
}
}
update_cur_bbox_vec(_cur_bbox_vec);
if (old_gpu_id != gpu_id)
cv::cuda::setDevice(old_gpu_id);
}
std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, bool check_error = true)
{
if (sync_PyrLKOpticalFlow_gpu.empty()) {
std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n";
return cur_bbox_vec;
}
int const old_gpu_id = cv::cuda::getDevice();
if(old_gpu_id != gpu_id)
cv::cuda::setDevice(gpu_id);
if (dst_mat_gpu.cols == 0) {
dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type());
dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
}
//dst_grey_gpu.upload(dst_mat, stream); // use BGR
dst_mat_gpu.upload(dst_mat, stream);
cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 1, stream);
if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) {
stream.waitForCompletion();
src_grey_gpu = dst_grey_gpu.clone();
cv::cuda::setDevice(old_gpu_id);
return cur_bbox_vec;
}
////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x
sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream); // OpenCV 3.x
cv::Mat cur_pts_flow_cpu;
cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream);
dst_grey_gpu.copyTo(src_grey_gpu, stream);
cv::Mat err_cpu, status_cpu;
err_gpu.download(err_cpu, stream);
status_gpu.download(status_cpu, stream);
stream.waitForCompletion();
std::vector<bbox_t> result_bbox_vec;
if (err_cpu.cols == cur_bbox_vec.size() && status_cpu.cols == cur_bbox_vec.size())
{
for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
{
cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i);
cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i);
float moved_x = cur_key_pt.x - prev_key_pt.x;
float moved_y = cur_key_pt.y - prev_key_pt.y;
if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
if (err_cpu.at<float>(0, i) < flow_error && status_cpu.at<unsigned char>(0, i) != 0 &&
((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0)
{
cur_bbox_vec[i].x += moved_x + 0.5;
cur_bbox_vec[i].y += moved_y + 0.5;
result_bbox_vec.push_back(cur_bbox_vec[i]);
}
else good_bbox_vec_flags[i] = false;
else good_bbox_vec_flags[i] = false;
//if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]);
}
}
cur_pts_flow_gpu.swap(prev_pts_flow_gpu);
cur_pts_flow_cpu.copyTo(prev_pts_flow_cpu);
if (old_gpu_id != gpu_id)
cv::cuda::setDevice(old_gpu_id);
return result_bbox_vec;
}
};
#elif defined(TRACK_OPTFLOW) && defined(OPENCV)
//#include <opencv2/optflow.hpp>
#include <opencv2/video/tracking.hpp>
class Tracker_optflow {
public:
const int flow_error;
Tracker_optflow(int win_size = 15, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
flow_error((_flow_error > 0)? _flow_error:(win_size*4))
{
sync_PyrLKOpticalFlow = cv::SparsePyrLKOpticalFlow::create();
sync_PyrLKOpticalFlow->setWinSize(cv::Size(win_size, win_size)); // 9, 15, 21, 31
sync_PyrLKOpticalFlow->setMaxLevel(max_level); // +- 3 pt
}
// just to avoid extra allocations
cv::Mat dst_grey;
cv::Mat prev_pts_flow, cur_pts_flow;
cv::Mat status, err;
cv::Mat src_grey; // used in both functions
cv::Ptr<cv::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow;
std::vector<bbox_t> cur_bbox_vec;
std::vector<bool> good_bbox_vec_flags;
void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
{
cur_bbox_vec = _cur_bbox_vec;
good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true);
cv::Mat prev_pts, cur_pts_flow;
for (auto &i : cur_bbox_vec) {
float x_center = (i.x + i.w / 2.0F);
float y_center = (i.y + i.h / 2.0F);
prev_pts.push_back(cv::Point2f(x_center, y_center));
}
if (prev_pts.rows == 0)
prev_pts_flow = cv::Mat();
else
cv::transpose(prev_pts, prev_pts_flow);
}
void update_tracking_flow(cv::Mat new_src_mat, std::vector<bbox_t> _cur_bbox_vec)
{
if (new_src_mat.channels() == 1) {
src_grey = new_src_mat.clone();
}
else if (new_src_mat.channels() == 3) {
cv::cvtColor(new_src_mat, src_grey, CV_BGR2GRAY, 1);
}
else if (new_src_mat.channels() == 4) {
cv::cvtColor(new_src_mat, src_grey, CV_BGRA2GRAY, 1);
}
else {
std::cerr << " Warning: new_src_mat.channels() is not: 1, 3 or 4. It is = " << new_src_mat.channels() << " \n";
return;
}
update_cur_bbox_vec(_cur_bbox_vec);
}
std::vector<bbox_t> tracking_flow(cv::Mat new_dst_mat, bool check_error = true)
{
if (sync_PyrLKOpticalFlow.empty()) {
std::cout << "sync_PyrLKOpticalFlow isn't initialized \n";
return cur_bbox_vec;
}
cv::cvtColor(new_dst_mat, dst_grey, CV_BGR2GRAY, 1);
if (src_grey.rows != dst_grey.rows || src_grey.cols != dst_grey.cols) {
src_grey = dst_grey.clone();
//std::cerr << " Warning: src_grey.rows != dst_grey.rows || src_grey.cols != dst_grey.cols \n";
return cur_bbox_vec;
}
if (prev_pts_flow.cols < 1) {
return cur_bbox_vec;
}
////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x
sync_PyrLKOpticalFlow->calc(src_grey, dst_grey, prev_pts_flow, cur_pts_flow, status, err); // OpenCV 3.x
dst_grey.copyTo(src_grey);
std::vector<bbox_t> result_bbox_vec;
if (err.rows == cur_bbox_vec.size() && status.rows == cur_bbox_vec.size())
{
for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
{
cv::Point2f cur_key_pt = cur_pts_flow.at<cv::Point2f>(0, i);
cv::Point2f prev_key_pt = prev_pts_flow.at<cv::Point2f>(0, i);
float moved_x = cur_key_pt.x - prev_key_pt.x;
float moved_y = cur_key_pt.y - prev_key_pt.y;
if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
if (err.at<float>(0, i) < flow_error && status.at<unsigned char>(0, i) != 0 &&
((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0)
{
cur_bbox_vec[i].x += moved_x + 0.5;
cur_bbox_vec[i].y += moved_y + 0.5;
result_bbox_vec.push_back(cur_bbox_vec[i]);
}
else good_bbox_vec_flags[i] = false;
else good_bbox_vec_flags[i] = false;
//if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]);
}
}
prev_pts_flow = cur_pts_flow.clone();
return result_bbox_vec;
}
};
#else
class Tracker_optflow {};
#endif // defined(TRACK_OPTFLOW) && defined(OPENCV)
#ifdef OPENCV
static cv::Scalar obj_id_to_color(int obj_id) {
int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } };
int const offset = obj_id * 123457 % 6;
int const color_scale = 150 + (obj_id * 123457) % 100;
cv::Scalar color(colors[offset][0], colors[offset][1], colors[offset][2]);
color *= color_scale;
return color;
}
class preview_boxes_t {
enum { frames_history = 30 }; // how long to keep the history saved
struct preview_box_track_t {
unsigned int track_id, obj_id, last_showed_frames_ago;
bool current_detection;
bbox_t bbox;
cv::Mat mat_obj, mat_resized_obj;
preview_box_track_t() : track_id(0), obj_id(0), last_showed_frames_ago(frames_history), current_detection(false) {}
};
std::vector<preview_box_track_t> preview_box_track_id;
size_t const preview_box_size, bottom_offset;
bool const one_off_detections;
public:
preview_boxes_t(size_t _preview_box_size = 100, size_t _bottom_offset = 100, bool _one_off_detections = false) :
preview_box_size(_preview_box_size), bottom_offset(_bottom_offset), one_off_detections(_one_off_detections)
{}
void set(cv::Mat src_mat, std::vector<bbox_t> result_vec)
{
size_t const count_preview_boxes = src_mat.cols / preview_box_size;
if (preview_box_track_id.size() != count_preview_boxes) preview_box_track_id.resize(count_preview_boxes);
// increment frames history
for (auto &i : preview_box_track_id)
i.last_showed_frames_ago = std::min((unsigned)frames_history, i.last_showed_frames_ago + 1);
// occupy empty boxes
for (auto &k : result_vec) {
bool found = false;
// find the same (track_id)
for (auto &i : preview_box_track_id) {
if (i.track_id == k.track_id) {
if (!one_off_detections) i.last_showed_frames_ago = 0; // for tracked objects
found = true;
break;
}
}
if (!found) {
// find empty box
for (auto &i : preview_box_track_id) {
if (i.last_showed_frames_ago == frames_history) {
if (!one_off_detections && k.frames_counter == 0) break; // don't show if obj isn't tracked yet
i.track_id = k.track_id;
i.obj_id = k.obj_id;
i.bbox = k;
i.last_showed_frames_ago = 0;
break;
}
}
}
}
// draw preview box (from old or current frame)
for (size_t i = 0; i < preview_box_track_id.size(); ++i)
{
// get object image
cv::Mat dst = preview_box_track_id[i].mat_resized_obj;
preview_box_track_id[i].current_detection = false;
for (auto &k : result_vec) {
if (preview_box_track_id[i].track_id == k.track_id) {
if (one_off_detections && preview_box_track_id[i].last_showed_frames_ago > 0) {
preview_box_track_id[i].last_showed_frames_ago = frames_history; break;
}
bbox_t b = k;
cv::Rect r(b.x, b.y, b.w, b.h);
cv::Rect img_rect(cv::Point2i(0, 0), src_mat.size());
cv::Rect rect_roi = r & img_rect;
if (rect_roi.width > 1 || rect_roi.height > 1) {
cv::Mat roi = src_mat(rect_roi);
cv::resize(roi, dst, cv::Size(preview_box_size, preview_box_size), cv::INTER_NEAREST);
preview_box_track_id[i].mat_obj = roi.clone();
preview_box_track_id[i].mat_resized_obj = dst.clone();
preview_box_track_id[i].current_detection = true;
preview_box_track_id[i].bbox = k;
}
break;
}
}
}
}
void draw(cv::Mat draw_mat, bool show_small_boxes = false)
{
// draw preview box (from old or current frame)
for (size_t i = 0; i < preview_box_track_id.size(); ++i)
{
auto &prev_box = preview_box_track_id[i];
// draw object image
cv::Mat dst = prev_box.mat_resized_obj;
if (prev_box.last_showed_frames_ago < frames_history &&
dst.size() == cv::Size(preview_box_size, preview_box_size))
{
cv::Rect dst_rect_roi(cv::Point2i(i * preview_box_size, draw_mat.rows - bottom_offset), dst.size());
cv::Mat dst_roi = draw_mat(dst_rect_roi);
dst.copyTo(dst_roi);
cv::Scalar color = obj_id_to_color(prev_box.obj_id);
int thickness = (prev_box.current_detection) ? 5 : 1;
cv::rectangle(draw_mat, dst_rect_roi, color, thickness);
unsigned int const track_id = prev_box.track_id;
std::string track_id_str = (track_id > 0) ? std::to_string(track_id) : "";
putText(draw_mat, track_id_str, dst_rect_roi.tl() - cv::Point2i(-4, 5), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.9, cv::Scalar(0, 0, 0), 2);
std::string size_str = std::to_string(prev_box.bbox.w) + "x" + std::to_string(prev_box.bbox.h);
putText(draw_mat, size_str, dst_rect_roi.tl() + cv::Point2i(0, 12), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
if (!one_off_detections && prev_box.current_detection) {
cv::line(draw_mat, dst_rect_roi.tl() + cv::Point2i(preview_box_size, 0),
cv::Point2i(prev_box.bbox.x, prev_box.bbox.y + prev_box.bbox.h),
color);
}
if (one_off_detections && show_small_boxes) {
cv::Rect src_rect_roi(cv::Point2i(prev_box.bbox.x, prev_box.bbox.y),
cv::Size(prev_box.bbox.w, prev_box.bbox.h));
unsigned int const color_history = (255 * prev_box.last_showed_frames_ago) / frames_history;
color = cv::Scalar(255 - 3 * color_history, 255 - 2 * color_history, 255 - 1 * color_history);
if (prev_box.mat_obj.size() == src_rect_roi.size()) {
prev_box.mat_obj.copyTo(draw_mat(src_rect_roi));
}
cv::rectangle(draw_mat, src_rect_roi, color, thickness);
putText(draw_mat, track_id_str, src_rect_roi.tl() - cv::Point2i(0, 10), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
}
}
}
}
};
class track_kalman_t
{
int track_id_counter;
std::chrono::steady_clock::time_point global_last_time;
float dT;
public:
int max_objects; // max objects for tracking
int min_frames; // min frames to consider an object as detected
const float max_dist; // max distance (in px) to track with the same ID
cv::Size img_size; // max value of x,y,w,h
struct tst_t {
int track_id;
int state_id;
std::chrono::steady_clock::time_point last_time;
int detection_count;
tst_t() : track_id(-1), state_id(-1) {}
};
std::vector<tst_t> track_id_state_id_time;
std::vector<bbox_t> result_vec_pred;
struct one_kalman_t;
std::vector<one_kalman_t> kalman_vec;
struct one_kalman_t
{
cv::KalmanFilter kf;
cv::Mat state;
cv::Mat meas;
int measSize, stateSize, contrSize;
void set_delta_time(float dT) {
kf.transitionMatrix.at<float>(2) = dT;
kf.transitionMatrix.at<float>(9) = dT;
}
void set(bbox_t box)
{
initialize_kalman();
kf.errorCovPre.at<float>(0) = 1; // px
kf.errorCovPre.at<float>(7) = 1; // px
kf.errorCovPre.at<float>(14) = 1;
kf.errorCovPre.at<float>(21) = 1;
kf.errorCovPre.at<float>(28) = 1; // px
kf.errorCovPre.at<float>(35) = 1; // px
state.at<float>(0) = box.x;
state.at<float>(1) = box.y;
state.at<float>(2) = 0;
state.at<float>(3) = 0;
state.at<float>(4) = box.w;
state.at<float>(5) = box.h;
// <<<< Initialization
kf.statePost = state;
}
// Kalman.correct() calculates: statePost = statePre + gain * (z(k)-measurementMatrix*statePre);
// corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
void correct(bbox_t box) {
meas.at<float>(0) = box.x;
meas.at<float>(1) = box.y;
meas.at<float>(2) = box.w;
meas.at<float>(3) = box.h;
kf.correct(meas);
bbox_t new_box = predict();
if (new_box.w == 0 || new_box.h == 0) {
set(box);
//std::cerr << " force set(): track_id = " << box.track_id <<
// ", x = " << box.x << ", y = " << box.y << ", w = " << box.w << ", h = " << box.h << std::endl;
}
}
// Kalman.predict() calculates: statePre = TransitionMatrix * statePost;
// predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
bbox_t predict() {
bbox_t box;
state = kf.predict();
box.x = state.at<float>(0);
box.y = state.at<float>(1);
box.w = state.at<float>(4);
box.h = state.at<float>(5);
return box;
}
void initialize_kalman()
{
kf = cv::KalmanFilter(stateSize, measSize, contrSize, CV_32F);
// Transition State Matrix A
// Note: set dT at each processing step!
// [ 1 0 dT 0 0 0 ]
// [ 0 1 0 dT 0 0 ]
// [ 0 0 1 0 0 0 ]
// [ 0 0 0 1 0 0 ]
// [ 0 0 0 0 1 0 ]
// [ 0 0 0 0 0 1 ]
cv::setIdentity(kf.transitionMatrix);
// Measure Matrix H
// [ 1 0 0 0 0 0 ]
// [ 0 1 0 0 0 0 ]
// [ 0 0 0 0 1 0 ]
// [ 0 0 0 0 0 1 ]
kf.measurementMatrix = cv::Mat::zeros(measSize, stateSize, CV_32F);
kf.measurementMatrix.at<float>(0) = 1.0f;
kf.measurementMatrix.at<float>(7) = 1.0f;
kf.measurementMatrix.at<float>(16) = 1.0f;
kf.measurementMatrix.at<float>(23) = 1.0f;
// Process Noise Covariance Matrix Q - result smoother with lower values (1e-2)
// [ Ex 0 0 0 0 0 ]
// [ 0 Ey 0 0 0 0 ]
// [ 0 0 Ev_x 0 0 0 ]
// [ 0 0 0 Ev_y 0 0 ]
// [ 0 0 0 0 Ew 0 ]
// [ 0 0 0 0 0 Eh ]
//cv::setIdentity(kf.processNoiseCov, cv::Scalar(1e-3));
kf.processNoiseCov.at<float>(0) = 1e-2;
kf.processNoiseCov.at<float>(7) = 1e-2;
kf.processNoiseCov.at<float>(14) = 1e-2;// 5.0f;
kf.processNoiseCov.at<float>(21) = 1e-2;// 5.0f;
kf.processNoiseCov.at<float>(28) = 5e-3;
kf.processNoiseCov.at<float>(35) = 5e-3;
// Measures Noise Covariance Matrix R - result smoother with higher values (1e-1)
cv::setIdentity(kf.measurementNoiseCov, cv::Scalar(1e-1));
//cv::setIdentity(kf.errorCovPost, cv::Scalar::all(1e-2));
// <<<< Kalman Filter
set_delta_time(0);
}
one_kalman_t(int _stateSize = 6, int _measSize = 4, int _contrSize = 0) :
kf(_stateSize, _measSize, _contrSize, CV_32F), measSize(_measSize), stateSize(_stateSize), contrSize(_contrSize)
{
state = cv::Mat(stateSize, 1, CV_32F); // [x,y,v_x,v_y,w,h]
meas = cv::Mat(measSize, 1, CV_32F); // [z_x,z_y,z_w,z_h]
//cv::Mat procNoise(stateSize, 1, type)
// [E_x,E_y,E_v_x,E_v_y,E_w,E_h]
initialize_kalman();
}
};
// ------------------------------------------
track_kalman_t(int _max_objects = 1000, int _min_frames = 3, float _max_dist = 40, cv::Size _img_size = cv::Size(10000, 10000)) :
track_id_counter(0), max_objects(_max_objects), min_frames(_min_frames), max_dist(_max_dist), img_size(_img_size)
{
kalman_vec.resize(max_objects);
track_id_state_id_time.resize(max_objects);
result_vec_pred.resize(max_objects);
}
float calc_dt() {
dT = std::chrono::duration<double>(std::chrono::steady_clock::now() - global_last_time).count();
return dT;
}
static float get_distance(float src_x, float src_y, float dst_x, float dst_y) {
return sqrtf((src_x - dst_x)*(src_x - dst_x) + (src_y - dst_y)*(src_y - dst_y));
}
void clear_old_states() {
// clear old bboxes
for (size_t state_id = 0; state_id < track_id_state_id_time.size(); ++state_id)
{
float time_sec = std::chrono::duration<double>(std::chrono::steady_clock::now() - track_id_state_id_time[state_id].last_time).count();
float time_wait = 0.5; // 0.5 second
if (track_id_state_id_time[state_id].track_id > -1)
{
if ((result_vec_pred[state_id].x > img_size.width) ||
(result_vec_pred[state_id].y > img_size.height))
{
track_id_state_id_time[state_id].track_id = -1;
}
if (time_sec >= time_wait || track_id_state_id_time[state_id].detection_count < 0) {
//std::cerr << " remove track_id = " << track_id_state_id_time[state_id].track_id << ", state_id = " << state_id << std::endl;
track_id_state_id_time[state_id].track_id = -1; // remove bbox
}
}
}
}
tst_t get_state_id(bbox_t find_box, std::vector<bool> &busy_vec)
{
tst_t tst;
tst.state_id = -1;
float min_dist = std::numeric_limits<float>::max();
for (size_t i = 0; i < max_objects; ++i)
{
if (track_id_state_id_time[i].track_id > -1 && result_vec_pred[i].obj_id == find_box.obj_id && busy_vec[i] == false)
{
bbox_t pred_box = result_vec_pred[i];
float dist = get_distance(pred_box.x, pred_box.y, find_box.x, find_box.y);
float movement_dist = std::max(max_dist, static_cast<float>(std::max(pred_box.w, pred_box.h)) );
if ((dist < movement_dist) && (dist < min_dist)) {
min_dist = dist;
tst.state_id = i;
}
}
}
if (tst.state_id > -1) {
track_id_state_id_time[tst.state_id].last_time = std::chrono::steady_clock::now();
track_id_state_id_time[tst.state_id].detection_count = std::max(track_id_state_id_time[tst.state_id].detection_count + 2, 10);
tst = track_id_state_id_time[tst.state_id];
busy_vec[tst.state_id] = true;
}
else {
//std::cerr << " Didn't find: obj_id = " << find_box.obj_id << ", x = " << find_box.x << ", y = " << find_box.y <<
// ", track_id_counter = " << track_id_counter << std::endl;
}
return tst;
}
tst_t new_state_id(std::vector<bool> &busy_vec)
{
tst_t tst;
// find empty cell to add new track_id
auto it = std::find_if(track_id_state_id_time.begin(), track_id_state_id_time.end(), [&](tst_t &v) { return v.track_id == -1; });
if (it != track_id_state_id_time.end()) {
it->state_id = it - track_id_state_id_time.begin();
//it->track_id = track_id_counter++;
it->track_id = 0;
it->last_time = std::chrono::steady_clock::now();
it->detection_count = 1;
tst = *it;
busy_vec[it->state_id] = true;
}
return tst;
}
std::vector<tst_t> find_state_ids(std::vector<bbox_t> result_vec)
{
std::vector<tst_t> tst_vec(result_vec.size());
std::vector<bool> busy_vec(max_objects, false);
for (size_t i = 0; i < result_vec.size(); ++i)
{
tst_t tst = get_state_id(result_vec[i], busy_vec);
int state_id = tst.state_id;
int track_id = tst.track_id;
// if new state_id
if (state_id < 0) {
tst = new_state_id(busy_vec);
state_id = tst.state_id;
track_id = tst.track_id;
if (state_id > -1) {
kalman_vec[state_id].set(result_vec[i]);
//std::cerr << " post: ";
}
}
//std::cerr << " track_id = " << track_id << ", state_id = " << state_id <<
// ", x = " << result_vec[i].x << ", det_count = " << tst.detection_count << std::endl;
if (state_id > -1) {
tst_vec[i] = tst;
result_vec_pred[state_id] = result_vec[i];
result_vec_pred[state_id].track_id = track_id;
}
}
return tst_vec;
}
std::vector<bbox_t> predict()
{
clear_old_states();
std::vector<bbox_t> result_vec;
for (size_t i = 0; i < max_objects; ++i)
{
tst_t tst = track_id_state_id_time[i];
if (tst.track_id > -1) {
bbox_t box = kalman_vec[i].predict();
result_vec_pred[i].x = box.x;
result_vec_pred[i].y = box.y;
result_vec_pred[i].w = box.w;
result_vec_pred[i].h = box.h;